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Abstract  Simulated annealing is a popular local search meta-heuristic used to address discrete
and, to a lesser extent, continuous optimization problems. The key feature of simulated annealing
is that it provides a means to escape local optima by allowing hill-climbing moves (i.e., moves
which worsen the objective function value) in hopes of finding a global optimum. A brief history
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1 BACKGROUND SURVEY

Simulated annealing is a local search algorithm (meta-heuristic) capable of escaping
from local optima. Its ease of implementation, convergence properties and its use
of hill-climbing moves to escape local optima have made it a popular technique over
the past two decades. It is typically used to address discrete, and to a lesser extent,
continuous optimization problems. Recent survey articles that provide a good overview
of simulated annealing’s theoretical development and domains of application include
Eglese (1990), Fleischer (1995), Koulamas et al. (1994), and Romeo and Sangiovanni-
Vincentelli (1991). Aarts and Korst (1989) and van Laarhoven and Aarts (1988) devote
entire books to the subject. Aarts and Lenstra (1997) dedicate a chapter to simulated
annealing in their book on local search algorithms for discrete optimization problems.

1.1 History and Motivation

Simulated annealing is so named because of its analogy to the process of physical
annealing with solids, in which a crystalline solid is heated and then allowed to cool
very slowly until it achieves its most regular possible crystal lattice configuration (i.e., its
minimum lattice energy state), and thus is free of crystal defects. If the cooling schedule
is sufficiently slow, the final configuration results in a solid with such superior structural
integrity. Simulated annealing establishes the connection between this type of thermo-
dynamic behavior and the search for global minima for a discrete optimization problem.
Furthermore, it provides an algorithmic means for exploiting such a connection.

At each iteration of a simulated annealing algorithm applied to a discrete optimiza-
tion problem, the objective function generates values for two solutions (the current
solution and a newly selected solution) are compared. Improving solutions are always
accepted, while a fraction of non-improving (inferior) solutions are accepted in the
hope of escaping local optima in search of global optima. The probability of accept-
ing non-improving solutions depends on a temperature parameter, which is typically
non-increasing with each iteration of the algorithm.

The key algorithmic feature of simulated annealing is that it provides a means
to escape local optima by allowing hill-climbing moves (i.e., moves which worsen
the objective function value). As the temperature parameter is decreased to zero, hill-
climbing moves occur less frequently, and the solution distribution associated with the
inhomogeneous Markov chain that models the behavior of the algorithm converges to a
form in which all the probability is concentrated on the set of globally optimal solutions
(provided that the algorithm is convergent; otherwise the algorithm will converge to
a local optimum, which may or not be globally optimal).

1.2 Definition of Terms

To describe the specific features of a simulated annealing algorithm for discrete opti-
mization problems, several definitions are needed. Let £2 be the solution space (i.e., the
set of all possible solutions). Let f : & — & be an objective function defined on
the solution space. The goal is to find a global minimum, w* (i.e., @* € Q such that
flw) = f(w*) for all @ € ). The objective function must be bounded to ensure
that @* exists. Define N(w) to be the neighborhood function for w € 2. Therefore,
associated with every solution, w € 2, are neighboring solutions, N{(w), that can be
reached in a single iteration of a local search algorithm.
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Simulated annealing starts with an initial solution @ € £2. A neighboring solution
«' € N(w) is then generated (either randomly or using some pre-specified rule). Sim-
ulated annealing is based on the Metropolis acceptance criterion (Metropolis et al.,
1953), which models how a thermodynamic system moves from the current solution
(state) w € §2 to acandidate solution w” € N(w), in which the energy content is being
minimized. The candidate solution, ', is accepted as the current solution based on the
acceptance probability

P{Accept o’ as next solution} =

exp[—(f(@) = f(w)/t] iff(@)— f(w)>0
I if f(@) — f(w) <0.
¢))

Define #; as the temperature parameter at (outer loop) iteration &, such that

ty >0 forallk and Ilim 1, =0 (2)

k—+o00

This acceptance probability is the basic element of the search mechanism in sim-
ulated annealing. If the temperature is reduced sufficiently slowly, then the system
can reach an equilibrium (steady state) at each iteration k. Let f(w) and f(w’)
denote the energies (objective function values) associated with solutions w € £2 and
' € N(w), respectively. This equilibrium follows the Boltzmann distribution, which
can be described as the probability of the system being in state @ € 2 with energy
f(w) at temperature T such that

exp (— f(w)/t)
Za)""eﬂ exp( - f({.!)”)/fk)’

P {System is in state w at temperature T} =

3)

If the probability of generating a candidate solution @’ from the neighbors of solution
w e Qis gr(w, '), where

Z grlww)=1, forallweQ, k=1,2,..., )
w'eN(w)

then a non-negative square stochastic matrix Px can be defined with transition
probabilities

sk(w,0)exp(— Ay /tk) o € Nw),o' #w

: 0 o ¢ Nw), o #w
U@ @)= 11 _ 3 pyan) s (5)
' eNju)
w"#£w

for all solutions i € © and all iterations k = 1,2,... and Ay = f(@')— f(w). These
transition probabilities define a sequence of solutions generated from an inhomoge-
neous Markov chain (Romeo and Sangiovanni-Vincentelli, 1991). Note that boldface
type indicates matrix/vector notation, and all vectors are row vectors.
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1.3 Statement of Algorithm
Simulated annealing is outlined in pseudo-code (Eglese, 1990).

Select an initial solution @ € 2
Select the temperature change counter k=0
Select a temperature cooling schedule, #
Select an initial temperature T = 5 > 0
Select a repetition schedule, My that defines the number of iterations executed at each
temperature, f,
Repeat
Set repetition counter m = 0
Repeat
Generate a solution @’ € N(w)
Calculate Ay, oy = f(@') — f(w)
If Ao <0, thenw < o
IfAyw > 0, then w < ' with probabilityexp ( — Ay /1)

m—m-++1
Until m = My,
k<—k+1

Until stopping criterion is met

This simulated annealing formulation results in Mg + M; + -+ . 4+ M, total iter-
ations being executed, where k corresponds to the value for #; at which the stopping
criteria is met. In addition, if Mg = 1 for all k, then the temperature changes at each
iteration.

1.4 Discrete versus Continuous Problems

The majority of the theoretical developments and application work with simulated
annealing has been for discrete optimization problems. However simulated annealing
has also been used as a tool to address problems in the continuous domain. There is
considerable interest in using simulated annealing for global optimization over regions
containing several local and global minima (due to inherent non-linearity of objective
functions). Fabian (1997) studies the performance of simulated annealing methods for
finding a global minimum of a function and Bohachevsky et al. (1986) presents a gen-
eralized simulated annealing algorithm for function optimization for use in statistical
applications. Optimization of continuous functions involves finding a candidate loca-
tion by picking a direction from the current (incumbent) solution and a step size to
take in this direction, and evaluating the function at the new (candidate) location. If
the function value of this candidate location is an improvement over the function value
of the incumbent location, then the candidate becomes the incumbent. This migra-
tion through local minima in search of a global minimum continues until the global
minimum is found or some termination criteria are reached. Belisle (1992) presents a
special simulated annealing algorithm for global optimization, which uses a heuristi-
cally motivated cooling schedule. This algorithm is easy to implement and provides a
reasonable alternative to existing methods.

Belisle et al. (1993) discusses convergence properties of simulated annealing
algorithms applied to continuous functions and applies these results to hit-and-run
algorithms used in global optimization. His convergence properties are consistent
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with those presented by Hajek (1988) and he provides a good contrast between con-
vergence in probability and the stronger almost sure convergence. Zabinsky et al.
(1993) extends this work to an improved hit-and-run algorithm used for global
optimization.

Fleischer and Jacobson (1996) proposes cybernetic optimization by simulated
annealing as a method of parallel processing that accelerated the convergence of simu-
lated annealing to the global optima. Fleischer (1999) extends the theory of cybernetic
optimization by simulated annealing into the continuous domain by applying prob-
abilistic feedback control to the generation of candidate solutions. The probabilistic
feedback control method of generating candidate solutions effectively accelerates con-
vergence to a global optimum using parallel simulated annealing on continuous variable
problems.

Locatelli (1996) presents convergence properties for a class of simulated annealing
algorithms for continuous global optimization by removing the restriction that the next
candidate point must be generated according to a probability distribution whose support
is the whole feasible set. Siarry et al. (1997) studies simulated annealing algorithms
for globally minimizing functions of many-continuous variables. Their work focuses
on how high-dimensionality can be addressed using variables discretization, as well as
considering the design and implementation of several complementary stopping criteria.
Yang (2000) and Locatelli (2000) also provide convergence results and criteria for
simulated annealing applied to continuous global optimization problems. Kiatsupaibul
and Smith (2000) introduces a general purpose simulated annealing algorithm to solve
mixed integer linear programs. The simulated annealing algorithm is constructed using
a Markov chain sampling algorithm to generate uniformly distributed points on an
arbitrary bounded region of a high dimensional integer lattice. They show that their
algorithm converges in probability to a global optimum. Romeijn et al. (1999) also
studies a simulated annealing algorithm that uses a reflection generator for mixed
integer/continuous global optimization problems.

2 CONVERGENCE RESULTS

Convergence results for simulated annealing have typically taken one of two directions;
either the algorithm has been modeled as a sequence of homogeneous Markov chains
or as a single inhomogeneous Markov chain.

The homogeneous Markov chain approach (see, e.g., Aarts and van Laarhoven,
1985; Faigle and Kern, 1991; Granville et al., 1994; Johnson and Jacobson, 2002a,b;
Lundy and Mees, 1986; Mitra et al., 1986; Rossier et al., 1986) assumes that each
temperature f; is held constant for a sufficient number of iterations m such that the
stochastic matrix Pg can reach its stationary (steady state) distribution m. Note that
in the interest of simplifying notation, the inner loop index m is suppressed. However,
the index k should be interpreted as the double index k,m, where a sequence of m =
1,2,...,M; simulated annealing iterations occur for each fixed k.) The existence of
a stationary distribution at each iteration k follows from Theorem 10.1. (Note: to
ensure that Theorem 1 is consistent with the simulated annealing algorithm depicted
in Section 1.3, without loss of generality, let # be a function only of each outer loop
iteration k, and let the respective number of inner loop iterations M and outer loop
iterations k each approach infinity).
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Theorem 10.1. Let Py(w,w’) be the probability of moving from solution @ to solu-
tion w' in one inner iteration at outer loop k, and let Pim)(w, w') be the probability

of going from solution w to solution «' in m inner loops. If the Markov chain asso-

ciated with P}cm) (w, ®") is irreducible and aperiodic with finitely many solutions, then

lim— 00 Pg")(w, ") = mi(w’) exists for all w,w’ € Q and iterations k. Furthermore,

mi(w') is the unique strictly positive solution of

m(w) = Z T (w)Pr(w, '), forallw e Q, (6)
we
and
> milw) = 1. @
wes

Proof. See Cinlar (1974)p. 153. W

The key requirements for the existence of the stationary distributions and for the
convergence of the sequence of my vectors include

1. transition matrix irreducibility (for every finite outer loop &, the transition matrix
can assign a path of non-zero probability between any two solutions @, @’ € ),

2. aperiodicity (starting at solution @’ € 2, it is possible to return to w,w’ with
period 1. See Isaacson and Madsen (1976),

3. a non-zero stationary probability distribution, as the number of outer loops k
approaches infinity.

Note that all simulated annealing proofs of convergence in the literature based on
homogeneous Markov chain theory, either explicitly or implicitly, use the sufficient
condition of reversibility (also called detailed balance) (Ross, 1996), defined as

T (w)Pi(w, ) = m(w)Pe(e, w), for all w,w’ € 2, and all iterations k. (8)

Reversibility is sufficient condition for a unique solution to exist for (6) and (7)
at each outer loop iteration k. Ross (1997) shows that a necessary condition for
reversibility is multiplicativity (i.e., for any three solutions w,®’,w” € Q such that
flw) < f(@") < f(w"), and for all iterations &,

ak(Apw) = ak(Bpw)ar(Ay o) )

where ax(Ag,) is the probability of accepting the transition from solution @ to solu-
tion @’ at outer loop iteration k). Reversibility is enforced by assuming conditions of
symmetry on the solution generation probabilities and by either directly expressing the
acceptance probability using an exponential form, or by requiring the multiplicative
condition in (9).

The homogeneous Markov chain proofs of convergence in the literature (implicitly
or explicitly) require the condition in (9) to hold for the acceptance function, and then
address the sufficient conditions on the solution generation matrix. For example, the
original homogeneous proofs of convergence (Aarts and van Laarhoven, 1985; Lundy
and Mees, 1986) require the multiplicative condition for the acceptance function, and
then assume that the solution generation function is symmetric and constant for all outer
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loop iterations k. Rossier et al. (1986) partitions the solution space into blocks composed
of neighboring solutions of equal objective function value, and then requires that only
the solution generation probabilities be symmetric between these blocks. Rossier et al.
(1986) then expresses the acceptance function as a ratio of the stationary distribution
probabilities (discussed in Section 2.1.3). Faigle and Schrader (1988) and Faigle and
Kern (1991) use a graph theoretic approach to relax the solution generation function
symmetry condition. However, they require that the solution acceptance probability
function satisfies (9).

Granville et al. (1994) proposes a simulated annealing procedure for filtering binary
images, where the acceptance function is based on the probability of the current solu-
tion, instead of the change in objective function value. The probability function that
Granville et al. (1994) present for accepting a candidate solution at (outer loop) itera-
tion k is based on the ratio of the stationary probability of the incumbent solution from
iteration k — 1, versus the stationary probability of an initial solution (which is based
on a maximum likelihood estimate). The acceptance probability is

& = (gmo(w)/mk—1(a')?® (10)

where g = infyeq T(w)/ sup,ycq (@) (¢ must also be estimated), and ¢(k) is a
slowly increasing function. Therefore, the probability of a solution transition does not
consider the objective function value of the candidate solution. Granville et al. (1994)
provides a proof of asymptotic convergence of this approach, but note that the proof
methodology does not show that the set of globally optimal solutions are asymptotically
uniformly distributed.

Simulated annealing and the homogeneous convergence theory are based on the
work of Metropolis et al. (1953), which addresses problems in equilibrium statistical
mechanics (Hammersley and Handscomb, 1964). To see this relationship, consider
a system in thermal equilibrium with its surroundings, in solution (state) S with
energy F(S). The probability density in phase space of the point representing S is
proportional to

exp (— F(S)/bT), (1)

where b is the Boltzmann constant, and T is the absolute temperature of the sur-
roundings. Therefore the proportion of time that the system spends in solution S
is proportional to (11) (Hammersley and Handscomb, 1964), hence the equilibrium
probability density forall § € £ is

exp(— F(S)/bT)

™S = Texp(— F(S)/bT)dS’ i)
The expectation of any valid solution function f(S) is thus
g(f) = LIS exp(~ FS)/bT)dS %)

[exp(— F(S)/bT)dS

Unfortunately, for many solution functions, (13) cannot be evaluated analytically.
Hammersley and Handscomb (1964) notes that one could theoretically use naive Monte
Carlo techniques to estimate the value of the two integrals in (11). However, this often



294  D. Henderson et al.

fails in practice since the exponential factor means that a significant portion of the inte-
grals is concentrated in a very small region of the solution space €2. This problem can
be overcome using importance sampling (see Bratley et al., 1987; Chapter 2), by gen-
erating solutions with probability density (12). This approach would also seem to fail,
because of the integral in the denominator of (12). However, Metropolis et al. (1953)
solves this problem by first discretizing the solution space, such that the integrals in (12)
and (13) are replaced by summations over the set of discrete solutions @’ € £2, and then
by constructing an irreducible, aperiodic Markov chain with transition probabilities
P(w, ') such that

m@) =) n(@Pww) foralw e, (14)

weld

where
exp(— F(w)/bT)

Y wea e¥p(— F(w)/bT)

Note that to compute the equilibrium distribution m, the denominator of (13) (a
normalizing constant) does not need to be calculated. Instead, the ratios 7 (w’)/7(w)
need only be computed and a transition matrix P defined that satisfies (14). Hammer-
sley and Handscomb (1964) show that Metropolis et al. (1953) accomplishes this by
defining P as the product of symmetric solution generation probabilities g(w, w"), and
the equilibrium ratios 7 (w)' /7 (w),

(') = for all ' € Q. (15)

P(w, w’)
glw, ') (@) /7 (w) if (o)) < Lo # o
_ g, ifr(@)/m(w) = 1,0 #w 6
T stwah)+ Y gl - (@(@")/r(w) ife =w (16)
w''en,
7 (") < (w)
where

8w, 0) >0, ) glww) =1, and gw,o) =g, 0) foralww e (17)

w'e

The use of stationary probability ratios to define the solution acceptance probabili-
ties, combined with symmetric solution generation probabilities, enable Metropolis
et al. (1953) to use the reversibility condition in (8) to show that (16) and (17)
satisfy (14).

Homogeneous proofs of convergence for simulated annealing become more diffi-
cult to establish when the reversibility condition is not satisfied. Note that the existence
of a unique stationary distribution for each outer loop iteration k is easily shown by
specifying that each transition matrix Pj be irreducible and aperiodic. On the other
hand, it becomes very difficult to derive an explicit closed-form expression for each
stationary distribution 74 that remains analytically tractable as the problem’s solution
space becomes large. One can no longer use (8) to describe each stationary distribution,
because in general, the multiplicative condition is not met. Instead, one must directly
solve the system of equations formed with (6) and (7). For example, Davis (1991)
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attempts to obtain a closed-form expression for iy by using Cramer’s rule and rewriting
(6) and (7) as
(I —P) =0 (18)

and
meel =1, (19)

respectively, where boldface type indicates vector/matrix notation, I is the identity
matrix, and el is a column vector of ones. Note that the card(£2) x card(£2) transition
matrix Py associated with (18) is of rank card(2)-1 (Cinlar, 1974). Therefore, by
deleting any one equation from (18), and substituting (19), the result is the set of
card(£2) linearly independent equations

a(I—Pp) =g (20)

where the square matrix (I — Pyg) is obtained by substituting the ith column of matrix
(I — Py) with a column vector of ones. The vector e; is a row vector of zeroes, except
for a one in the i th position. Since (I — Py)is of full rank, then its determinant (written
as det(I — Py)), is non-zero. Define (I — Pg)® to be the same matrix as (I — Py) except
that the elements of the wth row of (I — Py) are replaced by the vector e,,. Therefore,
for all iterations k,

det( — Py)?

R [ 11 €2
det(d —Py) orallw e 20

Tr(w) =

Davis (1991) attempts to solve (21) for each w € §2 via a multivariate Taylor series
expansion of each determinant, but is not able to derive a closed-form analytical
expression.

Overall, the difficulty of explicitly expressing the stationary distributions for large
solution spaces, combined with bounding the transition matrix condition number for
large k, suggests thatitis very difficult to prove asymptotic convergence of the simulated
annealing algorithm by treating (5) and (6) as a linear algebra problem.

Lundy and Mees (1986) notes that for each fixed outer loop iteration k, convergence
to the solution equilibrium probability distribution vector mg (in terms of the Euclidean
distance between P,f"') and my, as m — +00) is geometric since the solution space is
finite, and the convergence factor is given by the second largest eigenvalue of the transi-
tion matrix Pg. This result is based on a standard convergence theorem for irreducible,
aperiodic homogeneous Markov chains (see Cinlar, 1974). Note that a large solution
space precludes practical calculation of this eigenvalue. Lundy and Mees (1986) con-
jectures that when the temperaturefjs near zero, the second largest eigenvalue will be
close to one for problems with local optima, and thus convergence to the equilibrium
distribution will be very slow (recall that the dominant eigenvalue for Py is one, with
algebraic multiplicity one (Isaacson and Madsen, 1976). Lundy and Mees (1986) uses
its conjecture to justify why simulated annealing should be initiated with a relatively
high temperature. For an overview of current methods for assessing non-asymptotic
rates of convergence for general homogeneous Markov chains, see Rosenthal (1995).

The assumption of stationarity for each outer loop iteration k limits practical appli-
cation of homogeneous Markov chain theory—Romeo and Sangiovanni-Vincentelli
(1991) shows that if equilibrium (for a Markov chain that satisfies the reversibility
condition) is reached in a finite number of steps, then it is achieved in one step. Thus,
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Romeo and Sangiovanni-Vincentelli (1991) conjectures that there is essentially no
hope for the most-used versions of simulated annealing to reach equilibrium in a finite
number of iterations.

The second convergence approach for simulated annealing is based on inhomoge-
neous Markov chain theory (Anily and Federgruen, 1987; Gidas, 1985; Mitra et al.,
1986). In this approach, the Markov chain need not reach a stationary distribution (e.g.,
the simulated annealing inner loop need not be infinitely long) for each outer loop k. On
the other hand, an infinite sequence of (outer loop) iterations k must still be examined,
with the condition that the temperature parameter #; cool sufficiently slowly. The proof
given by Mitra et al. (1986) is based on satisfying the inhomogeneous Markov chain
conditions of weak and strong ergodicity (Isaacson and Madsen, 1976; Seneta, 1981).
The proof requires four conditions:

1. The inhomogeneous simulated annealing Markov chain must be weakly ergodic
(i.e., dependence on the initial solution vanishes in the limit).

2. An eigenvector iy with eigenvalue one must exist such that (6) and (7) hold for
every iteration k.

3. The Markov chain must be strongly ergodic (i.e., the Markov chain must be
weakly ergodic and the sequence of eigenvectors 4 must converge to a limiting
form), i.e.,

o0
Y "l — mg |l < +oc. (22)
k=0

4. The sequence of eigenvectors must converge to a form where all probability mass
is concentrated on the set of globally optimal solutions @*. Therefore,

kli?go m = moPt, (23)

where 7°P* is the equilibrium distribution with only global optima having prob-
abilities greater than zero. (Note that weak and strong ergodicity are equivalent
for homogeneous Markov chain theory.)

Mitra et al. (1986) satisfies condition (1) (weak ergodicity) by first forming a lower
bound on the probability of reaching any solution from any local minimum, and then
showing that this bound does not approach zero too quickly. For example, they define
the lower bound for the simulated annealing transition probabilities in (5) as

P™(w,w') > w™ exp(— mAL/tkm—1) (24)

where m is the number of transitions needed to reach any solution from any solution
of non-maximal objective function value, w > ()} is a lower bound on the one-step
solution generation probabilities, and Ay, is the maximum one-step increase in objective
function value between any two solutions. Mitra et al. (1986) shows that the Markov
chain is weakly ergodic if

o0
Y exp(—mAL/tim1) = +00 (25)
k=kp
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Therefore, weak ergodicity is obtained if the temperature f is reduced sufficiently
slowly to zero such that (25) is satisfied. In general, the (infinite) sequence of
temperatures {fx},k = 1,2,... mustsatisfy

t = p

Z Tog ) (26)

where limg_ o fx = 0, B is a problem-dependent constant, and k is the number of
iterations. Mitra et al. (1986) shows that conditions (2), (3), and (4) are satisfied by
using the homogeneous Markov chain theory developed for the transition probabilities
(5), and assuming that the solution generation function is symmetric.

Romeo and Sangiovanni-Vincentelli (1991) notes that while the logarithmic cooling
schedule in (26) is a sufficient condition for the convergence, there are only a few
values for B which make the logarithmic rule also necessary. Furthermore, there exists
a unique choice for 8 which makes the logarithmic rule both necessary and sufficient
for the convergence of simulated annealing to the set of global optima. Hajek (1988)
was the first to show that the logarithmic cooling schedule (26) is both necessary and
sufficient, by developing a tight lower bound for £, namely the depth of the deepest
local minimum which is not a global minimum, under a weak reversibility assumption.
(Note that Hajek requires the depth of global optima to be infinitely deep.) Hajek defines
a Markov chain to be weakly reversible if, for any pair of solutions w,w’ € £ and for
any non-negative real number h, w is reachable at height i from «’ if and only if &’
is reachable at height & from w. Note that Hajek (1988) does not attempt to satisfy the
conditions of weak and strong ergodicity, but instead uses a more general probabilistic
approach to develop a lower bound on the probability of escaping local, but not global
optima. Connors and Kumar (1989) substantiate the necessary and sufficientconditions
in Hajek (1988) using the orders of recurrence,

o0
Bi=supi{x=0: Zexp( —x/t)mp(w) = 400 foralli € . 27
k=0

Connors and Kumar (1989) shows that these orders of recurrence quantify the asymp-
totic behavior of each solution’s probability in the solution distribution. The key result is
that the simulated annealing inhomogeneous Markov chain converges in a Cesaro sense
to the set of solutions having the largest recurrence orders. Borkar (1992) improves this
convergence result by using a convergence/oscillation dichotomy result for martingales.
Tsitsiklis (1989) uses bounds and estimates for singularly perturbed, approximately sta-
tionary Markov chains to develop a convergence theory that subsumes the condition of
weak reversibility in Hajek (1988). (Note that Tsitsiklis (1989) defines N(h) C 2 as
the set of all local minima (in terms of objective function value) of depth & + 1 or more.
Therefore # is the smallest & such that all local (but not global) minima have depth A
or less. Tsitsiklis (1989) conjectures that without some form of reversibility, there does
not exist any £ such that the global optima are contained in the set of local optima.)
Note that Chiang and Chow (1988, 1994), Borkar (1992), Connors and Kumar (1989),
Hajek (1988), and Mitra et al. (1986) all require (either explicitly or implicitly) the
multiplicative condition (9) for their proofs of convergence.

Anily and Federgruen (1987) uses perturbation analysis techniques (e.g., see Meyer,
1980) to prove convergence of a particular stochastic hill-climbing algorithm, by
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bounding the deviations of the sequence of stationary distributions of the particular
hill-climbing algorithm against the sequence of known stationary distributions cor-
responding to a simulated annealing algorithm. In general, this convergence proof
approach is only useful for a restrictive class of simulated annealing algorithms, since
the transition matrix condition number grows exponentially as the number of iterations
k becomes large.

Anily and Federgruen (1987) also presents a proof of convergence for simu-
lated annealing with general acceptance probability functions. Using inhomogeneous
Markov chain theory, it proves convergence under the following necessary and sufficient
conditions:

1. The acceptance probability function must, for any iteration k, allow any hill-
climbing transition to occur with positive probability.

2. The acceptance probability function must be bounded and asymptotically
monotone, with limit zero for hill-climbing solution transitions.

3. In the limit, the stationary probability distribution must have zero probability
mass for every non-globally optimal solution.

4. The probability of escaping from any locally (but not globally) optimal solution
must not approach zero too quickly.

Anily and Federgruen (1987) uses condition (3) to relax the acceptance function
multiplicative condition (9). However, in practice, condition (3) would be very diffi-
cult to check without assuming that (9) holds. Condition (4) provides the necessary
condition for the rate that the probability of hill-climbing transitions approaches zero.
Condition (4) is expressed quantitatively as follows: let #x be defined by (2), and define
the minimum one-step acceptance probability as

g, = min a, (o, ') (28)

(u’EN(c'.-))

Define the set of local optima L C € such that w € L implies that f(w) < f(w") for

all @’ € N(w), and let
a, = max a(w,o) 29)

wel,
w'eN(@)\ L

Finally, let any solution @’ € £2, be reachable from any solution @ € £, in q transitions
or less. Then if (non-globally) locally optimal solutions exist,

> (a,)! =+00 (30)
k=1

and conditions (1), (2), and (3) hold, then the simulated annealing algorithm will
asymptotically converge to the set of global optima with probability one. However, if
(non-globally) locally optimal solutions exist and

o0
)y, < +oo @0
k=1
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then the probability of each solution is asymptotically dependent upon the initial solu-
tion. Therefore, the simulated annealing algorithm will not always converge to the
set of global optima with probability one. Johnson and Jacobson (2002b) relaxes the
sufficient conditions found in Anily and Federgruen (1987) by using a path argument
between global optima and local (but not global) optima.

Yao and Li (1991) and Yao (1995) also discuss simulated annealing algorithms with
general acceptance probabilities, though their primary contribution is with respect to
general neighborhood generation distributions. Schuur (1997) provides a description of
acceptance functions ensuring the convergence of the associated simulated annealing
algorithm to the set of global optima.

The inhomogeneous proof concept is stronger than the homogeneous approach
in that it provides necessary conditions for the rate of convergence, but its asymp-
totic nature suggests that practical implementation may not be feasible. Romeo and
Sangiovanni-Vincentelli (1991) notes “there is no reason to believe that truncating the
logarithmic temperature sequence would yield a good configuration, since the tail of
the sequence is the essential ingredient in the proof.” In addition, the logarithmic cool-
ing schedule dictates a very slow rate of convergence. Therefore, most recent work has
focused on methods of improving simulated annealing’s finite-time behavior and mod-
ifying or blending the algorithm with other search methods such as genetic algorithms
(Liepins and Hilliard, 1989), tabu search (Glover, 1994), or both (Fox, 1993).

3 RELATIONSHIP TO OTHER LOCAL
SEARCH ALGORITHMS

The hill-climbing strategy inherent in simulated annealing has lead to the formulation
of other such algorithms (e.g., threshold accepting, the noising method). Moreover,
though different in how they traverse the solution space, both tabu search and genetic
algorithm share with simulated annealing the objective of using local information to
find global optima over solution spaces contaminated with multiple local optima.

3.1 Threshold Accepting

Questioning the very need for a randomized acceptance function, Dueck and Scheuer
(1990), and independently, Moscato and Fontanari (1990) propose the threshold
accepting algorithm, where the acceptance function is defined as

1 ifQk 2 Apw

a Aww’ — "
K Baw) 0 otherwise

with (O defined as the threshold value at iteration k. Qy is typically set to be a
deterministic, non-increasing step function in k. Dueck and Scheuer (1990) reports
computational results that suggest dramatic improvements in traveling salesman prob-
lem solution quality and algorithm run-time over basic simulated annealing. Moscato
and Fontanari (1990) reports more conservative results—they conjecture that simulated
annealing’s probabilistic acceptance function does not play a major role in the search
for near-optimal solutions.

Althofer and Koschnick (1991) develops a convergence theory for threshold accept-
ing based on the concept that simulated annealing belongs to the convex hull of threshold
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accepting. The idea presented in Althofer and Koschnick (1991) is that (for a finite Qx
threshold sequence) there can exist only finitely many threshold accepting transition
matrices; but simulated annealing can have infinitely many transition matrices because
of the real-valued nature of the temperature at each iteration. However, every simu-
lated annealing transition matrix for a given problem can be represented as a convex
combination of the finitely many threshold accepting transition matrices. Althofer and
Koschnick (1991) is unable to prove that threshold accepting will asymptotically reach
a global minimum, but it does prove the existence of threshold schedules that pro-
vide convergence to within an &-neighborhood of the optimal solutions. Jacobson and
Yiicesan (2002a) proves that if the threshold value approaches zero as k approaches
infinity, then the algorithm does not converge in probability to the set of globally optimal
solutions.

Hu et al. (1995) modifies threshold accepting to include a non-monotonic,
self-tuning threshold schedule in the hope of improving the algorithm’s finite-time
performance. Hu et al. (1995) allows the threshold @ to change dynamically (either
up or down), based on the perceived likelihood of being near a local minimum. These
changes are accomplished using a principle they call dwindling expectation—when
the algorithm fails to move to neighboring solutions, the threshold @y is gradually
increased, in the hope of eventually escaping a local optimum. Conversely, when solu-
tion transitions are successful, the threshold is reduced, in order to explore local optima.
The experimental results based on two traveling salesman problems presented in Hu
et al. (1995) showed that the proposed algorithm outperformed previous hill-climbing
methods in terms of finding good solutions earlier in the optimization process.

Threshold accepting’s advantages over simulated annealing lie in its ease of imple-
mentation and its generally faster execution time, due to the reduced computational
effort in avoiding acceptance probability computations and generation of random num-
bers (Moscato and Fontanari, 1990). However, compared to simulated annealing,
relatively few threshold accepting applications are reported in the literature (Lin et al.,
1995; Scheermesser and Bryngdahl, 1995; Nissen and Paul, 1995).

3.2 Noising Method

Charon and Hudry (1993) advocates a simple descent algorithm called the noising
method. The algorithm first perturbs the solution space by adding random noise to the
problem’s objective function values. The noise is gradually reduced to zero during the
algorithm’s execution, allowing the original problem structure to reappear. Charon and
Hudry (1993) provides computational results, but does not prove that the algorithm will
asymptotically converge to the set of globally optimal solutions. Charon and Hudry
(2001) shows how the noising method is a generalization of simulated annealing and
threshold accepting.

Storer et al. (1992) proposes an optimization strategy for sequencing problems, by
integrating fast, problem-specific heuristics with local search. Its key contribution is
to base the definition of the search neighborhood on a heuristic problem pair (h,p),
where h is a fast, known, problem-specific heuristic and p represents the problem
data. By perturbing the heuristic, the problem, or both, a neighborhood of solutions is
developed. This neighborhood then forms the basis for local search. The hope is that
the perturbations will cluster good solutions close together, thus making it easier to
perform local search.
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3.3 Tabu Search

Tabu search (Glover, 1994) is a general framework for a variety of iterative local
search strategies for discrete optimization. Tabu search uses the concept of memory
by controlling the algorithm’s execution via a dynamic list of forbidden moves. This
allows the tabu search algorithm to intensify or diversify its search of a given problem’s
solution space in an effort to avoid entrapment in local optima. Note that a criticism
of simulated annealing is that it is completely memoryless (i.e., simulated annealing
disregards all historical information gathered during the algorithm’s execution). On the
other hand, no proofs of convergence exist in the literature for the general tabu search
algorithm.

Faigle and Kern (1992) proposes a particular tabu search algorithm called proba-
bilistic tabu search (Glover, 1989) as a meta-heuristic to help guide simulated annealing.
Probabilistic tabu search attempts to capitalize on both the asymptotic optimality of
simulated annealing and the memory feature of tabu search. In probabilistic tabu search,
the probabilities of generating and accepting each candidate solution are set as functions
of both a temperature parameter (as in simulated annealing) and information gained
in previous iterations (as for tabu search). Faigle and Kern (1992) are then able to
prove asymptotic convergence of their particular tabu search algorithm by using meth-
ods developed for simulated annealing (Faigle and Kern, 1991; Faigle and Schraeder,
1988). Note that the results of Faigle and Kern (1992) build upon Glover (1989) where
probabilistic tabu search was first introduced and contrasted with simulated annealing.

34 Genetic Algorithms

Genetic algorithms (Liepens and Hilliard, 1989) emulate the evolutionary behavior of
biological systems. They generate a sequence of populations of qcandidate solutions to
the underlying optimization problem by using a set of genetically inspired stochastic
solution transition operators to transform each population of candidate solutions into a
descendent population. The three most popular transition operators are reproduction,
cross-over, and mutation (Davis, 1991). Davis and Principe (1991) and Rudolph (1994)
attempt to use homogeneous finite Markov chain techniques to prove convergence of
genetic algorithms (Cerf, 1998), but are unable to develop a theory comparable in scope
to that of simulated annealing.

Miihlenbein (1997) presents a theoretical analysis of genetic algorithms based on
population genetics. He counters the popular notion that models that mimic natural phe-
nomenon are superior to other models. The article argues that evolutionary algorithms
can be inspired by nature, but do not necessarily have to copy a natural phenomenon.
He addresses the behavior of transition operators and designs new genetic operators
that are not necessarily related to events in nature, yet still perform well in practice.

One criticism of simulated annealing is the slow speed at which it sometimes con-
verges. Delport (1998) combines simulated annealing with evolutionary algorithms
to improve performance in terms of speed and quality of solution. He improves this
hybrid system of simulated annealing and evolutionary selection by improving the cool-
ing schedule based on fast recognition of the thermal equilibrium in terms of selection
intensity. This technique results in much faster convergence of the algorithm.

Sullivan and Jacobson (2000) links genetic algorithms with simulated annealing
using generalized hill climbing algorithms (Jacobson et al., 1998). They first link
genetic algorithms to ordinal hill climbing algorithms, which can then be used, through
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its formulation within the generalized hill climbing algorithm framework, to form a
bridge with simulated annealing. Though genetic algorithms have proven to be effec-
tive for addressing intractable discrete optimization problems, and can be classified
as a type of hill-climbing approach, its link with generalized hill climbing algorithms
(through the ordinal hill climbing formulation) provides a means to establish well-
defined relationships with other generalized hill climbing algorithms (like simulated
annealing and threshold accepting). They also present two formulations of genetic algo-
rithms that provide a first step towards developing a bridge between genetic algorithms
and other local search strategies like simulated annealing.

4 PRACTICAL GUIDELINES

Implementation issues for simulated annealing can follow one of two paths—that
of specifying problem-specific choices (neighborhood, objective function, and con-
straints), and that of specifying generic choices (generation and acceptance probability
functions, and the cooling schedule) (Eglese, 1990). The principal shortcoming of
simulated annealing is that it often requires extensive computer time. Implementation
modifications generally strive to retain simulated annealing’s asymptotic convergence
character, but at reduced computer run-time. The methods discussed here are mostly
heuristic.

Problem-Specific Choices

Objective Functions One problem-specific choice involves the objective function
specification. Stern (1992) recommends a heuristic temperature-dependent penalty
function as a substitute for the actual objective function for problems where low cost
solutions have neighbors of much higher cost, or in cases of degeneracy (i.e., large
neighborhoods of solutions of equal, but high costs). The original objective function
surfaces, as the penalty and the temperature are gradually reduced to zero. This tech-
nique is similar to the noising method presented by Charon and Hudrey (1993), where
the penalty function is described as noise and is reduced at each outer loop iteration of
the algorithm. One speed-up technique is to evaluate only the difference in objective
functions, A, instead of calculating both f(w)and f(w'). Tovey (1988) suggests
several methods of approximating A, by using surrogate functions (that are faster
to evaluate than A, .y, but not as accurate) probabilistically for cases when evaluation
of A, 1s expensive; this technique is referred to as the surrogate function swindle.

Straub et al. (1995) improves the performance of simulated annealing on problems
in chemical physics by using the classical density distribution instead of the molecular
dynamics of single point particles to describe the potential energy landscape. Ma and
Straub (1994) reports that using this distribution has the effect of smoothing the energy
landscape by reducing both the number and depth of local minima.

Yan and Mukai (1992) considers the case when a closed-form formula for the objec-
tive function is not available. They use a probabilistic simulation (termed the stochastic
ruler method) to generate a sample objective function value for an input solution, and
then accept the solution if the sample objective function value falls within a predeter-
mined bound. They also provide a proof of asymptotic convergence by extrapolating
the convergence proofs for simulated annealing, and analyze the rate of convergence.
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Generic Choices

Generation Probability Functions Generation probability functions are usually cho-
sen as uniform distributions with probabilities proportional to the size of the neigh-
borhood. The generation probability function is typically not temperature-dependent.
Fox (1993) suggests that instead of blindly generating neighbors uniformly, adopt an
intelligent generation mechanism that modifies the neighborhood and its probability
distribution to accommodate search intensification or diversification, in the same spirit
of the tabu search meta-heuristic. Fox (1993) also notes that simulated annealing con-
vergence theory does not preclude this idea. Tovey (1988) suggests an approach with
a similar effect, called the neighborhood prejudice swindle.

Acceptance Probability Functions The literature reports considerable experimen-
tation with acceptance probability functions for hill-climbing transitions. The most
popular is the exponential form (1). Ogbu and Smith (1990) considers replacing the
basic simulated annealing acceptance function ax(A, /) with a geometrically decreas-
ing form that is independent of the change in objective function value. They adopt a
probabilistic-exhaustive heuristic technique in which randomly chosen neighbors of
a solution are examined and all solutions that are accepted are noted, but only the
last solution accepted becomes the new incumbent. The hope is that this scheme will
explore a broader area of the solution space of a problem. Their acceptance probability
function is defined for all solutions w, &’ €  and fork=1,2,...,K as

aix*1 if f(w) > f(w)

L
ap(w,w) = a, =
K ) . 1 otherwise

where «; is the initial acceptance probability value, x € (0,1) is a reducing factor, and
K is the number of stages (equivalent to a temperature cooling schedule). They also
experiment with this method (and a neighborhood of large cardinality) on a permutation
flow shop problem, and reports that its approach found comparable solutions to the basic
simulated annealing algorithm in one-third the computation time.

4.1 Choice of Cooling Schedule

The simulated annealing cooling schedule is fully defined by an initial temperature, a
schedule for reducing/changing the temperature, and a stopping criterion. Romeo and
Sangiovanni-Vincentelli (1991) notes that an effective cooling schedule is essential to
reducing the amount of time required by the algorithm to find an optimal solution.
Therefore much of the literature on cooling schedules (e.g., Cardoso et al., 1994,
Fox and Heine, 1993; Nourani and Andersen, 1998; and Cohn and Fielding, 1999) is
devoted to this topic.

Homogeneous simulated annealing convergence theory has been used to design
effective cooling schedules. Romeo and Sangiovanni-Vincentelli (1991) suggests the
following procedure for designing a cooling schedule:

1. Start with an initial temperature fo for which a good approximation of the
stationary distribution 1, is quickly reached.
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2. Reduce #p by an amount §(¢) small enough such that 7, is a good starting point
to approximate 7Ty, —s(r).

3. Fix the temperature at a constant value during the iterations needed for the
solution distribution to approximate y,—s().

Repeat the above process of cooling and iterating until no further improvement seems
possible.

Cooling schedules are grouped into two classes: static schedules, which must be
completely specified before the algorithm begins; and adaptive schedules, which adjust
the temperature’s rate of decrease from information obtained during the algorithm’s exe-
cution. Cooling schedules are almost always heuristic; they seek to balance moderate
execution time with simulated annealing’s dependence on asymptotic behavior.

Strenski and Kirkpatrick (1991) presents an exact (non-heuristic) characterization
of finite-length annealing schedules. They consider extremely small problems that
represent features (local optima and smooth/hilly topologies), and solve for solution
probabilities after a finite number of iterations to gain insights into some popular
assumptions and intuition behind cooling schedules. Their experiments suggest that
optimal cooling schedules are not monotone decreasing in temperature. They also show
that for the test problem (a white noise surface), geometric and linear cooling schedules
perform better than inverse logarithmic cooling schedules, when sufficient computing
effort is allowed. Moreover, their experiments do not show measurable performance
differences between linear and geometric cooling schedules. They also observe that
geometric cooling schedules are not greatly affected by excessively high initial tem-
peratures. The results presented suggest that the even the most robust adaptive cooling
schedule “produces annealing trajectories which are never in equilibrium” (Strenski
and Kirkpatrick, 1991). However, they also conclude that the transition acceptance rate
is not sensitive to the degree of closeness to the equilibrium distribution.

Christoph and Hoffmann (1993) also attempts to characterize optimal cooling
schedules. They derive a relationship between a finite sequence of optimal temper-
ature values (i.e., outer loops) and the number of iterations (i.e., inner loops) at each
respective temperature for several small test problems to reach optimality (i.e., the
minimal mean final energy). They find that this scaling behavior is of the form

Xm = Om v—b,,, (32)

where a and b are scaling coefficients, xm = e~/ is referred to as the temperature, v
is the number of inner loop iterations at temperature X, and m is the number of outer
loops at which the temperature Xy, is reduced. The proposed approach is to solve for
the coefficients @ and b based on known temperature and iteration parameter values
for an optimal schedule based on several replications of the algorithm using (m x v)
iterations for each replication, and then use (32) to interpolate the optimal cooling
schedule for intermediate iterations. They however do not make any suggestions on
how to efficiently solve for the necessary optimal cooling schedules for a (typically
large) problem instance.

Romeo and Sangiovanni-Vincentelli (1991) presents a theoretical framework for
evaluating the performance of the simulated annealing algorithm. They discuss anneal-
ing schedules in terms of initial temperature 7, the number of inner loops for each value
of 7, the rate that the temperature 7 decreases (i.e., cooling schedule) and the criteria
for stopping the algorithm. They conclude that the theoretical results obtained thus far
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have not been able to explain why simulated annealing is so successful even when a
diverse collection of static cooling schedule heuristics is used. Many heuristic methods
are available in the literature to find optimal cooling schedules, but the effectiveness
of these schedules can only be compared through experimentation. They conjecture
that the neighborhood and the corresponding topology of the objective function are
responsible for the behavior of the algorithm.

Conn and Fielding (1999) conducts a detailed analysis of various cooling schedules
and how they affect the performance of simulated annealing. Convergent simulated
annealing algorithms are often too slow in practice, whereas a number of non-
convergent algorithms may be preferred for good finite-time performance. They analyze
various cooling schedules and present cases where repeated independent runs using a
non-convergent cooling schedule provide acceptable results in practice. They pro-
vide examples of when it is both practically and theoretically justified to use a very
high, fixed temperature, or even fast cooling schedules which have a small probability
of reaching global minima and apply these cooling schedules to traveling salesman
problems of various sizes. Fielding (2000) computationally studies fixed temperature
cooling schedules for the traveling salesman problem, the quadratic assignment prob-
lem, and the graph partitioning problem, and demonstrates that a fixed temperature
cooling schedule can yield superior results in locating optimal and near-optimal solu-
tions. Orosz and Jacobson (2002a,b) present finite-time performance measures for
simulated annealing with fixed temperature cooling schedules. They illustrate their
measures using randomly generated instances of the traveling salesman problem.

Another approach to increasing the speed of simulated annealing is to implement
a two-staged simulated annealing algorithm. In two-staged simulated annealing algo-
rithms, a fast heuristic is used to replace simulated annealing at higher temperatures,
with a traditional simulated annealing algorithm implemented at lower temperatures to
improve on the fast heuristic solution. In addition to implementing an intelligent cool-
ing schedule, finding the initial temperature fy to initialize the traditional simulated
annealing algorithm is important to the success of the two-staged algorithm. Varanelli
and Cohoon (1999) proposes a method for determining an initial temperature fg for
two-staged simulated annealing algorithms using traditional cooling schedules. They
note that if tp is too low at the beginning of the traditional simulated annealing phase,
the algorithm can get trapped in an inferior solution, while if the initial temperature
to is too high, the algorithm can waste too many iterations (hence computing time) by
accepting too many hill-climbing moves.

4.2 Choice of Neighborhood

A key problem-specific choice concerns the neighborhood function definition. The effi-
ciency of simulated annealing is highly influenced by the neighborhood function used
(Moscato, 1993). The choice of neighborhood serves to enforce a topology—Eglese
(1990) reports that “a neighborhood structure which imposes a ‘smooth’ topology
where the local minima are shallow is preferred to a ‘bumpy’ topology where there
are many deep local minima.” Solla et al. (1986) and Fleischer and Jacobson (1999)
report similar conclusions. This also supports the result in Hajek (1988) that shows that
asymptotic convergence to the set of global optima depends on the depth of the local
minima.
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Another factor to consider when choosing neighborhood functions is the neighbor-
hood size. No theoretical results are available, other than the necessity of reachability
(in a finite number of steps) from any solution to any other solution. Cheh et al. (1991)
reports that small neighborhoods are best, while Ogbu and Smith (1990) provides
evidence that larger neighborhoods result in better simulated annealing performance.
Goldstein and Waterman (1988) conjectures that if the neighborhood size is small com-
pared to the total solution space cardinality, then the Markov chain cannot move around
the solution space fast enough to find the minimum in a reasonable time. On the other
hand, a very large neighborhood has the algorithm merely sampling randomly from a
large portion of the solution space, and thus, is unable to focus on specific areas of the
solution space. It is reasonable to believe that neighborhood size is heavily problem-
specific. For example, problems where the smoothness of its solution space topology
is moderately insensitive to different neighborhood definitions may benefit from larger
neighborhood sizes.

Fleischer (1993) and Fleischer and Jacobson (1999) use concepts from information
theory to show that the neighborhood structure can affect the information rate or total
uncertainty associated with simulated annealing. Fleischer (1993) shows that simulated
annealing tends to perform better as the entropy level of the associated Markov chain
increases, and thus conjectures that an entropy measure could be useful for predicting
when simulated annealing would perform well on a given problem. However, efficient
ways of estimating the entropy are needed to make this a practical tool.

Another issue on neighborhood function definition addresses the solution space
itself. Chardaire et al. (1995) proposes a method for addressing 0—1 optimization
problems, in which the solution space is progressively reduced by fixing the value of
strongly persistent variables (which have the same value in all optimal solutions). They
isolate the persistent variables during simulated annealing’s execution by periodically
estimating the expectation of the random variable (a vector of binary elements) that
describes the current solution, and fixing the value of those elements in the random
variable that meet threshold criteria.

4.3 Domains—Types of Problems with Examples

Simulated annealing has developed into a popular tool for optimization in the last
decade. It has been used to address numerous discrete optimization problems as well
as continuous variable problems. Several application and computational survey articles
have been published on simulated annealing. Johnson et al. (1989, 1991) present a series
of articles on simulated annealing applied to certain well-studied discrete optimization
problems. The first in the series of articles uses the graph partitioning problem to
illustrate simulated annealing and highlight the effectiveness of several modifications to
the basic simulated annealing algorithm. The second in the series focuses on applying
lessons learned from the first article to the graph coloring and number partitioning
problems. Local optimization techniques were previously thought to be unacceptable
approaches to these two problems. Johnson et al. (1991) also observes that for long
run lengths, simulated annealing outperforms the traditional techniques used to solve
graph coloring problems. However, simulated annealing did not compare well with
traditional techniques on the number partitioning problem except for small problem
instances. The third article in the series (not yet published) uses simulated annealing
to approach the well-known traveling salesman problem.
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Koulamas et al. (1994) focuses specifically on simulated annealing applied to appli-
cations in production/operations management and operations research. They discuss
traditional problems such as single machine, flow shop and job shop scheduling, lot
sizing, and traveling salesman problems as well as non-traditional problems to include
graph coloring and number partitioning. They conclude that simulated annealing is an
effective tool for solving many problems in operations research and that the degree
of accuracy that the algorithm achieves can be controlled by the practitioner, in terms
of number of iterations and neighborhood functions (i.e., an increased number of iter-
ations (outer loops) combined with increased number of searches at each iteration
(inner loops) can result in solutions with a higher probability of converging to the
optimal solution). Fleischer (1995) discusses simulated annealing from a historical
and evolutionary point of view in terms of solving difficult optimization problems. He
summarizes on-going research and presents an application of simulated annealing to
graph problems.

The simulated annealing algorithm has proved to be a good technique for solv-
ing difficult discrete optimization problems. In engineering optimization, simulated
annealing has emerged as an alternative tool to address problems that are difficult to
solve by conventional mathematical programming techniques. The algorithm’s major
disadvantage is that solving a complex system problem may be an extremely slow,
albeit convergent process, using much more processor time than some conventional
algorithms. Consequently, simulated annealing has not been widely embraced as an
optimization algorithm for engineering problems. Attempts have been made to improve
the performance of the algorithm either by reducing the annealing length or changing
the generation and the acceptance mechanisms. However, these faster schemes, in gen-
eral, do not inherit the property of escaping local minima. A more efficient way to
reduce the processor time and make simulated annealing a more attractive alternative
for engineering problems is to add parallelism (e.g., see Hamma et al., 2000). How-
ever, the implementation and efficiency of parallel simulated annealing algorithms are
typically problem-dependent. Leite et al. (1999) considers the evaluation of parallel
schemes for engineering problems where the solution spaces may be very complex
and highly constrained, with function evaluations varying from medium to high cost.
In addition, they provide guidelines for selecting appropriate schemes for engineering
problems. They also present an engineering problem with relatively low fitness evalu-
ation cost and strong time constraints to demonstrate the lower bounds of applicability
of parallel schemes.

Many signal processing applications create optimization problems with multi-
modal and non-smooth cost functions. Gradient methods are ineffective in these
situations because of multiple local minima and the requirement to calculate gradients.
Chen and Luk (1999) proposes an adaptive simulated annealing algorithm as a viable
optimization tool for addressing such difficult non-linear optimization problems. The
adaptive simulated annealing algorithm maintains the advantages of simulated anneal-
ing, but converges faster. Chen and Luk demonstrate the effectiveness of adaptive
simulated annealing with three signal processing applications: maximum likelihood
joint channel and data estimation, infinite-impulse-response filter design and evalua-
tion of minimum symbol-error-rate decision feedback equalizer. They conclude that
the adaptive simulated annealing algorithm is a powerful global optimization tool for
solving such signal processing problems.
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Abramson et al. (1999) describes the use of simulated annealing for solving the
school time tabling problem. They use the scheduling problem to highlight the per-
formance of six different cooling schedules: the basic geometric cooling schedule,
a scheme that uses multiple cooling rates, geometric reheating, enhanced geometric
reheating, non-monotonic cooling, and reheating as a function of cost. The basic geo-
metric cooling schedule found in van Laarhoven and Aarts (1987) is used as the baseline
schedule for comparison purposes. Experimental results suggest that using multiple
cooling rates for a given problem yields better quality solutions in less time than
the solutions produced by a single cooling schedule. They conclude that the cooling
scheme that uses the phase transition temperature (i.e., when sub-parts of the combi-
natorial optimization problem are solved) in combination with the best solution to date
produces the best results.

Emden-Weinert and Proksch (1999) presents a study of a simulated annealing
algorithm for the airline crew-pairing problem based on an algorithm run-cutting for-
mulation. They found that the algorithm run-time can be decreased and solution quality
can be improved by using a problem-specific initial solution, relaxing constraints, com-
bining simulated annealing with a problem-specific local improvement heuristic, and
by conducting multiple independent runs.

There is no question that simulated annealing can demand significant computa-
tional time to reach global minima. Recent attempts to use parallel computing schemes
to speed up simulated annealing have provided promising results. Chu et al. (1999)
presents a new, efficient, and highly general-purpose parallel optimization method
based upon simulated annealing that does not depend on the structure of the opti-
mization problem being addressed. Their algorithm was used to analyze a network of
interacting genes that control embryonic development and other fundamental biologi-
cal processes. They use a two-stage procedure which monitors and pools performance
statistics obtained simultaneously from all processors and then mixes states at inter-
vals to maintain a Boltzman-like distribution of costs. They demonstrate that their
parallel simulated annealing approach leads to nearly optimal parallel efficiency for
certain optimization problems. In particular, the approach is appropriate when the
relative effort required to compute the cost function is large compared to the rela-
tive communication effort between parallel machines for pooling statistics and mixing
states.

Alrefaei and Andradottir (1999) presents a modified simulated annealing algo-
rithm with a constant temperature to address discrete optimization problems and use
two approaches to estimate an optimal solution to the problem. One approach esti-
mates the optimal solution based on the state most visited versus the state last visited,
while the other approach uses the best average estimated objective function value to
estimate the optimal solution. Both approaches are guaranteed to converge almost
surely to the set of global optimal solutions under mild conditions. They compare per-
formance of the modified simulated annealing algorithm to other forms of simulated
annealing used to solve discrete optimization problems.

Creating effective neighborhood functions or neighborhood generation mecha-
nisms is a critical element in designing efficient simulated annealing algorithms
for discrete optimization problems. Tian et al. (1999) investigates the application
of simulated annealing to discrete optimization problems with a permutation prop-
erty, such as the traveling salesman problem, the flow-shop scheduling problem,
and the quadratic assignment problems. They focus on the neighborhood function
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of the discrete optimization problem and in particular the generation mechanism
for the algorithm used to address the problem. They introduce six types of per-
turbation scheme for generating random permutation solutions and prove that each
scheme satisfies asymptotic convergence requirements. The results of the experi-
mental evaluations on the traveling salesman problem, the flow-shop scheduling
problem, and the quadratic assignment problem suggest that the efficiencies of the
perturbation schemes are different for each problem type and solution space. They
conclude that with the proper perturbation scheme, simulated annealing produces effi-
cient solutions to different discrete optimization problems that possess a permutation
property.

Research continues to focus on the idea of simulated annealing applied to opti-
mization of continuous functions. Continuous global optimization is defined as the
problem of finding points on a bounded subset of " where some real valued function
f assumes its optimal (maximal or minimal) value. Application of simulated anneal-
ing to continuous optimization generally falls into two classes. The first approach
closely follows the original idea presented by Kirkpatrick et al. (1983) in that the
algorithm mimics the physical annealing process. The second approach describes
the annealing process with Langevin equations, where the global minimum is found
by solving stochastic differential equations (see Aluffi-Pentini et al., 1985). Geman
and Hwang (1986) proves that continuous optimization algorithms based on Langevin
equations converge to the global optima. Dekkers and Aarts (1991) proposes a third
stochastic approach to address global optimization based on simulated annealing. Their
approach is very similar to the formulation of simulated annealing as applied to dis-
crete optimization problems. They extend the mathematical formulation of simulated
annealing to continuous optimization problems, and prove asymptotic convergence to
the set of global optima based on the equilibrium distribution of Markov chains. They
also discuss an implementation of the proposed algorithm and compares its perfor-
mance with other well-known algorithms on a standard set of test functions from the
literature.

5 FUTURE DIRECTIONS

5.1 Generalized Hill Climbing Algorithms

Generalized Hill Climbing algorithms (GHC) (Jacobson et al., 1998) provide a
framework for modeling local search algorithms used to address intractable discrete
optimization problems. All generalized hill climbing algorithms have the same basic
structure, but can be tailored to a specific instance of a problem by changing the
hill-climbing random variable (which is used to accept or reject inferior solutions)
and neighborhood functions. Generalized hill climbing algorithms are described in
pseudo-code form:

Select an initial solution w € 2

Set the outer loop counter bound K and the inner loop counter bounds
Mik=1,2,..., K

Define a set of hill-climbing (random) variables Ry: 2 x @ — R U {—o0, 00},
k=12,...,K
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Set the iteration indices k = m = 1
Repeat while k < K

Repeat while m < My,

Generate asolution @’ € N(w)

Calculate A, = flw') — f(w)

If Rp(w, ") > Ay, then @ « @'

If Rp(w, @) < Ay, then @ «— w

m <« m+ 1

Until m = Mg

m<« L,k <k+1

Untilk = K
Note that the outer and inner loop bounds, K and Mg,k = 1,2,..., K, respectively,
may all be fixed, or K can be fixed with the Mg,k = 1,2,..., K, defined as random
variables whose values are determined by the solution at the end of each set of inner
loop iterations satisfying some property (e.g., the solution is a local optima).
Generalized hill climbing algorithms can be viewed as sampling procedures over

the solution space §2. The key distinction between different generalized hill climbing
algorithm formulations is in how the sampling is performed. For example, simulated
annealing produces biased samples, guided by the neighborhood function, the objective
function, and the temperature parameter. More specifically, simulated annealing can be
described as a generalized hill climbing algorithm by setting the hill-climbing random
variable, Rg(w, @) = —fxIn(ug), 0 € Q, 0’ € N(w),k = 1,2,..., K, and the {u} are
independent and identically distributed U(0,1) random variables. To formulate Monte
Carlo search as a generalized hill climbing algorithm, set Ri(w,®’) = +o00,w €
Q,0' € N(w),k = 1,2,..., K. Deterministic local search accepts only neighbors of
improving (lower) objective function value and can be expressed as a generalized hill
climbing algorithm with Rg(w, ") = 0,0 € ,0’ € N(w),k = 1,2,..., K. Other
algorithms that can be described using the generalized hill climbing framework include
threshold accepting (1990) some simple forms of tabu search (1997), and Weibull
accepting. Jacobson et al. (1998), Sullivan and Jacobson (2001), and Johnson and
Jacobson (2002b) provide a complete discussion of these algorithms and a description
of how these algorithms fit into the generalized hill climbing algorithm framework.

5.2 Convergence versus Finite-Time Performance

The current literature focuses mainly on asymptotic convergence properties of simu-
lated annealing algorithms (Section 2 outlines and describes several of these results);
however, considerable work on finite-time behavior of simulated annealing has been
presented over the past decade. Chiang and Chow (1989) and Mazza (1992) investi-
gate the statistical properties of the first visit time to a global optima which provides
insight into the time-asymptotic properties of the algorithm as the outer loop counter,
k — +4o00. Catoni (1996) investigates optimizing a finite-horizon cooling schedule to
maximize the number of visits to a global optimum after a finite number of iterations.
Desai (1999) focuses on finite-time performance by incorporating size-asymptotic
information supplied by certain eigenvalues associated with the transition matrix. Desai
provides some quantitative and qualitative information about the performance of sim-
ulated annealing after a finite number of steps by observing the quality of solutions
related to the number of steps that the algorithm has taken.
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Srichander (1995) examines the finite-time performance of simulated annealing
using spectral decomposition of matrices. He proposes that an annealing schedule
on the temperature is not necessary for the final solution of the simulated annealing
algorithm to converge to the global minimum with probability one. Srichander shows
thatinitiating the simulated annealing algorithm with high initial temperatures produces
an inefficient algorithm in the sense that the number of function evaluations required
to obtain a global minima is very large. A modified simulated annealing algorithm is
presented with a low initial temperature and an iterative schedule on the size of the
neighborhood sets that leads to a more efficient algorithm. The new algorithm is applied
to a real-world example and performance is reported.

Fleischer and Jacobson (1999) uses a reverse approach to establish theoretical rela-
tionships between the finite-time performance of an algorithm and the characteristics
of problem instances. They observe that the configuration space created by an instance
of a discrete optimization problem determines the efficiency of simulated annealing
when applied to that problem. The entropy of the Markov chain embodying simulated
annealing is introduced as a measure that captures the entire topology of the configura-
tion space associated with the particular instance of the discrete optimization problem.
By observing the expected value of the final state in a simulated annealing algorithm
as it relates to the entropy value of the underlying Markov chain, the article presents
measures of performance that determine how well the simulated annealing algorithm
performs in finite-time. Their computational results suggest that superior finite-time
performance of a simulated annealing algorithm are associated with higher entropy
measures.

5.3 Extensions

The popularity of simulated annealing has spawned several new annealing-like algo-
rithms. Pepper et al. (2000) introduce demon algorithms and test them on the traveling
salesman problem. Ohlmann and Bean (2000) introduce another variant of simulated
annealing termed compressed annealing. They incorporate the concepts of pressure
and volume, in addition to temperature, to address discrete optimization problems with
relaxed constraints. They also introduce a primal/dual meta-heuristic by simultaneously
adjusting temperature and pressure in the algorithm.

Much work continues in the area of convergence and comparing the performance of
simulated annealing algorithms to other local search strategies. Jacobson and Yiicesan
(2002b) presents necessary and sufficient (asymptotic) convergence conditions for gen-
eralized hill climbing algorithms that include simulated annealing as a special case.
They also introduce new performance measures that can be used to evaluate and com-
pare both convergent and non-convergent generalized hill climbing algorithms with
random restart local search (Jacobson, 2002). Such a comparison provides insights
into both asymptotic and finite-time performance of discrete optimization algorithms.
For example, they use the global visit probability to evaluate the performance of simu-
lated annealing using random restart local search as abenchmark. These results suggest
that random restart local search may outperform simulated annealing provided that a
sufficiently large number of restarts are executed. Ferreira and Zerovnik (1993) develop
bounds on the probability that simulated annealing obtains an optimal (or near-optimal)
solution, and use these bound to obtain similar results for random restart local search
and simulated annealing. Fox (1994) notes that this result is only true if both the number
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of accepted and rejected moves are counted. Fox (1994) also provides a clever exam-
ple to illustrate this point, and notes that comparing random restart local search and
simulating annealing may not be prudent. Fox (1993, 1995) presents modifications of
simulated annealing that circumvent this counting issue, hence yielding superior per-
forming simulated annealing algorithm implementations. The primary value of using
simulated annealing may therefore be forfinite-time executions that obtain near-optimal
solutions reasonably quickly. This, in turn, suggests that one should focus on the finite-
time behavior of simulated annealing rather than the asymptotic convergence results
that dominate the literature.
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