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Abstract. IQBE has been shown as a promising technique to assist the
users in the query formulation process. In this framework, queries are au-
tomatically derived from sets of documents provided by them. However,
the different proposals found in the specialized literature are usually val-
idated in non realistic information retrieval environments. In this work,
we design several experimental setups to create real-like retrieval envi-
ronments and validate the applicability of a previously proposed multi-
objective evolutionary IQBE technique for fuzzy queries on them.

1 Introduction

Information retrieval (IR) may be defined as the problem of the selection of
documentary information from storage in response to search questions provided
by a user [2]. Information retrieval systems (IRSs) deal with documentary bases
containing textual, pictorial or vocal information and process user queries trying
to allow the user to access to relevant information in an appropriate time interval.

The paradigm of Inductive Query by Example (IQBE) [4], where queries
describing the information contents of a set of documents provided by a user
are automatically derived, has proven to be useful to assist the user in the
query formulation process. This is especially useful for fuzzy IRSs [3], as they
consider complex queries composed of weighted query terms joined by the logical
operators AND and OR, which are difficult to be formulated by non expert users.

The most known existing approach is that of Kraft et al. [15], based on
genetic programming (GP) [14]. Several other approaches have been proposed
based on more advanced evolutionary algorithms (EAs) [1], such as genetic
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algorithm-programming (GA-P) [12] or simulated annealing-programming, to
improve Kraft et al.’s [6, 7].

In view of the latter, the IQBE paradigm seems to perform properly but
most of the existing proposals are validated by only running the algorithms on a
whole document collection selected from those typical in IR, as Cranfield, CISI,
etc. This does not show the real environment in which an IRS will be used.

In this paper, we will design real-like environments to test these kinds of
algorithms by: i) dividing the documentary base (Cranfield, in our case) into a
training document set, in which the queries will be learned, and a test document
set, against to which the obtained queries will be tested; and ii) using training
collections with a number of irrelevant documents that shows the real behaviour
of the users in an IQBE or a user profile [13] environment. Then, we will validate
a specific algorithm able to generate several queries with a different trade-off
between precision and recall in a single run, the multiobjective GA-P IQBE
technique proposed in [9], in the designed IR environments.

The paper is structured as follows. Section 2 is devoted to the preliminaries,
the basis of FIRSs and a short review of IQBE. Then, Section 3 describes the
design of realistic IR test environments. The multiobjective GA-P proposal is
reviewed in Section 4. Section 5 presents the experiments developed and the
analysis of results. Finally, the conclusions are pointed out in Section 6.

2 Preliminaries

2.1 Fuzzy Information Retrieval Systems

FIRSs are constituted of the following three main components:

The documentary data base, that stores the documents and their represen-
tations (typically based on index terms in the case of textual documents).

Let D be a set of documents and T be a set of unique and significant terms
existing in them. An indexing function F': D x T' — [0, 1] is defined as a fuzzy
relation mapping the degree to which document d belongs to the set of documents
“about” the concept(s) represented by term t. By projecting it, a fuzzy set is
associated to each document (d; = {< t,uq,(t) > |t € T}; pa,(t) = F(di,t))
and term (t; = {< d, i, (d) > |d € D}; py,(d) = F(d,1;)).

In this paper, we will work with Salton’s normalized inverted document fre-
quency (IDF) [2]: wa,t = faz - log(N/Ny) ;5 F(d,t) = m, where fq4 is
the frequency of term ¢ in document d, N is the total number of documents and
Ny is the number of documents where ¢ appears at least once.

The query subsystem, allowing the users to formulate their queries and pre-
senting the retrieved documents to them. Fuzzy queries are expressed using a
query language that is based on weighted terms, where the numerical or linguistic
weights represent the “subjective importance” of the selection requirements.



In FIRSs, the query subsystem affords a fuzzy set ¢ defined on the document
domain specifying the degree of relevance (the so called retrieval status value
(RSV)) of each document in the data base with respect to the processed query:
¢={<d,pu,(d)>|de D} ; py(d)=RSV,(d).

The matching mechanism, that evaluates the degree to which the document
representations satisfy the requirements expressed in the query (i.e., the RSV)
and retrieves those documents that are judged to be relevant to it.

When using the importance interpretation [3], the query weights represent
the relative importance of each term in the query. The RSV of each document
to a fuzzy query ¢ is then computed as follows [18]. When a single term query
is logically connected to another by the AND or OR operators, the relative
importance of the single term in the compound query is taken into account by
associating a weight to it. To maintain the semantics of the query, this weighting
has to take a different form according as the single term queries are ANDed or
ORed. Therefore, assuming that A is a fuzzy term with assigned weight w,
the following expressions are applied to obtain the fuzzy set associated to the
weighted single term queries A, (disjunctive queries) and A¥ (conjunctive ones):

Ay ={<d,pa,(d)>|deD} ;  pa,(d)=Min (w,pa(d))
AY ={<d,pav(d) >|d€e D} ;5  paw(d)=Maz (1-w,pa(d))

If the term is negated in the query, a negation function is applied to obtain
the corresponding fuzzy set: A = {< d, pz(d) > |d € D} ; pz(d) =1-pa(d).
Finally, the RSV of the compound query is obtained by combining the single

weighted term evaluations into a unique fuzzy set as follows:

AAND B = {<d,psa anp B(d) > [d € D}; pa anp B(d) = Min(pa(d), us(d))
AOR B={<d,paor B(d) >|d€D} ; paor p(d) =Maz(pa(d), us(d))

2.2 Inductive Query by Example

IQBE was proposed in [4] as “a process in which searchers provide sample docu-
ments (examples) and the algorithms induce (or learn) the key concepts in order
to find other relevant documents” . This way, IQBE is a technique for assisting the
users in the query formulation process performed by machine learning methods.
It works by taking a set of relevant (and optionally, non relevant documents)
provided by a user and applying an off-line learning process to automatically
generate a query describing the user’s needs from that set. The obtained query
can then be run in other IRSs to obtain more relevant documents.

3 Real-like IR Environments to Test IQBE Algorithms

As said, the experimental studies developed in most IQBE contributions [4, 68,
15] do not represent a real environment where an IRS will be used. In this work,
we aim at designing realistic retrieval environments to test IQBE algorithms.



Two problems are found in the experimental setups usually considered. On
the one hand, the document set provided to the IQBE algorithm is the whole
documentary collection. In this set, the relevant documents are those which are
relevant to the selected query, while the irrelevant documents are the rest of
them. Hence, the amount of irrelevant documents is very high (for example,
in the first Cranfield query, 1369 of the 1398 documents are irrelevant). This
does not represent a realistic environment as when the user provides a set of
(relevant and irrelevant) documents, for which he wants to learn the best possible
query retrieving them, the amount of irrelevant documents provided uses to be
significantly smaller.

On the other hand, the real goal of the query learning system (the derivation
of queries modeling the information needs represented by the set of documents
provided by the user, which are able to retrieve new relevant documents when
applied to a different documentary collection) is not actually tested.

Considering the previous aspects, and following the usual machine learning
operation mode, we propose to divide the documentary base into a training
document set from which the queries will be learned, and a test document set
against to which those queries will be tested. Besides, in order to confront the
former aspect, we use training collections with a realistic number of irrelevant
documents that matches with the real behaviour of the users. In short, we will
implement four different environments — two corresponding to a usual IQBE
framework and other two coming from the user profile field —, by considering a
different number of irrelevant documents for the training set in each case®.

These four proposals are analyzed as follows and their characteristics are
summarized in the left side of Table 1.

3.1 Classic IQBE Test Environments

We include within this group those environments where the training document
set is assigned a number of irrelevant documents similar to that a user would
provide in a real IQBE case. It is expected that a normal user can afford up to
30 or 40 irrelevant documents to represent an information need. On the other
hand, other real (and very usual) case is that where the user does only provide
relevant documents and does not give any irrelevant one at all.

As said, we are working with Cranfield, which has a total of 1398 documents.
We have decided to design two different classic IQBE environments: one of them
where the training set has a 2% of the whole irrelevant documents (randomly
selected) and another where no irrelevant document is included on that set.

Both variants will allow us to check if the amount of documents normally
provided by a user to a IQBE process is enough to derive queries satisfying the
user’s needs or if there is a need of using any additional assistance mechanism.

4 Notice that two different variants are obtained from each of these four environments
by taking two different values for the number of relevant documents considered.



Table 1. Characteristics of the IR environments designed

A1/A2|B1/B2|C1/C2|D1/D2 A B C D
% non-rel| O 2 10 50 Pob-Size| 200 | 400 | 800 | 400
% rel |50,25(50,25|50,25/50,25 #Eval |1000(25000/50000({25000

3.2 User Profile-based IQBE Test Environments

These two environments are based on incorporating a large number of irrelevant
documents to the training documentary set, a 10% and a 50% of the overall
number existing in the whole collection. At first sight, we could think there is a
discrepancy with a realistic IR environment, since a user is not able to provide so
many irrelevant documents (around 690 when working with Cranfield). However,
this operation mode is clearly justified when considering user profiles.

User profile derivation [13] is based on a relevance feedback framework where
a user runs queries on an IRS and judges the relevance of the retrieved docu-
ments to his informations needs. Then, the system makes use of this information
to build a wuser profile, representing the user information needs, considered to
enhance the retrieval efficacy of future queries of that user. Hence, the system
can store user relevance judgements from different queries in an automatic way.
As said in [11], these techniques will be useful for users having a persistent need
for the same type of information in order to increase the retrieval effectiveness.

4 A Multiobjective GA-P Algorithm for Automatically
Learning Fuzzy Queries

The components of our multiobjective IQBE algorithm to learn fuzzy queries
based on the GA-P paradigm [9] are described next.

Coding Scheme: The expressional part (GP part) encodes the query com-
position — terms and logical operators — and the coefficient string (GA part)
represents the term weights, as shown in Figure 1. A real coding scheme is con-
sidered for the GA part.

Fitness Function: The multiobjective GA-P (MOGA-P) algorithm is aimed
at jointly optimizing the precision and recall criteria [2], as follows:

Maz P = 2qrdfa : Maz R= 2ara-fa
ded Zde

with r4 € {0,1} being the relevance of document d for the user and f; € {0,1}
being the retrieval of document d in the processing of the current query.



Expressional part Valuestring
05 | wl
0.7 | w2
0.25 | w3

Fig. 1. GA-P individual representing the fuzzy query 0.5 t1 AND (0.7 t3 OR 0.25 t4)

Pareto-based Multiobjective Selection and Niching Scheme: The Pareto-
based multiobjective EA considered is Fonseca and Fleming’s Pareto-based MOGA
[5]. Therefore, the selection scheme of our MOGA-P algorithm involves the fol-
lowing four steps:

1. Each individual is assigned a rank equal to the number of individuals domi-
nating it plus one (non-dominated individuals receive rank 1).

2. The population is increasingly sorted according to that rank.

3. Each individual is assigned a fitness value according to its ranking in the
population: f(C;) = ﬁ(c)

4. The fitness assignment of each group of individuals with the same rank is
averaged among them.

Then, a niching scheme is applied in the objective space to obtain a well-
distributed set of queries with a different trade-off between precision and recall
(see [9] for details). Finally, the intermediate population is obtained by Tourna-
ment selection [17].

Genetic Operators: The BLX-a crossover operator [10] is applied twice on the
GA part to obtain two offsprings. Michalewicz’s non-uniform mutation operator
[17] is considered to perform mutation on that part.

The usual GP crossover [14] is considered for the GP part. Two different
mutation operators are applied: random generation of a new subtree, and random
change of a query term by another not present in the encoded query.

5 Experiments Developed and Analysis of Results

As said, the documentary set used to design our IR frameworks has been the
Cranfield collection, composed of 1398 documents about Aeronautics. It has
been automatically indexed by first extracting the non-stop words, applying a
stemming algorithm, thus obtaining a total number of 3857 different indexing
terms, and then using the normalized IDF scheme (see Section 2.1) to generate
the term weights in the document representations.



Among the 225 queries associated to the Cranfield collection, we have selected
those presenting 20 or more relevant documents (queries 1, 2, 23, 73, 157, 220
and 225). The number of relevant documents associated to each of these seven
queries are 29, 25, 33, 21, 40, 20 and 25, respectively.

For each one of these queries and each retrieval environment, the documen-
tary collection has been divided into two different, non overlapped, document
sets, training and test, each of them composed of the percentage of relevant and
irrelevant documents showed in the left side of Table 1.

MOGA-P has been run ten different times on the training document set
associated to each query during a fixed number of evaluations (see the right side
of Table 1). The common parameter values considered are a maximum of 20
nodes for the expression parts, a Tournament size ¢ of 1% of the population size,
0.8 and 0.2 for the crossover and mutation probabilities in both the GA and the
GP parts.

The Pareto sets obtained in the ten runs performed for each query have
been put together, and the dominated solutions removed from the unified set.
Then, five queries well distributed on the Pareto front were selected from each
of the seven unified Pareto sets and run on the corresponding test set once
preprocessed®.

Table 2. Statistics of the Pareto sets obtained by the MOGA-P algorithm (option C1)

#q| #p | opp |#dp|ogap| Mz |omy | M3 |omy
1 130.7(4.318| 2.9 {0.263|6.455|1.305(0.601|0.025
45.1(5.098| 1.8 |0.190(8.421|1.192|0.448|0.052
23 |34.0(4.825| 3.9 (0.411(9.216(2.061| 0.74 |0.042
73 144.3|3.699| 1.7 |0.145|6.735(1.714/0.338|0.071
157(33.5|5.301| 4.8 |0.395|8.944(2.046|0.803|0.035
220(36.6(2.021| 1.1 |0.095{1.308|1.241{0.044{0.041
225(36.9/6.082| 2.2 | 0.19 |8.899|2.605|0.485(0.056

As there is not enough space in the contribution to report every experiment
developed, several illustrative results have been selected to be showed. Tables 2
and 3 collect several data about the composition of the ten Pareto sets generated
for each query in environments C1 and D1, always showing the averaged value
and its standard deviation. From left to right, the columns contain the number
of non-dominated solutions obtained (#p), the number of different objective
vectors (i.e., precision-recall pairs) existing among them (#dp), and the values
of two of the usual multiobjective metrics M35 and M3 [5].

On the other hand, Table 4 shows the retrieval efficacy of the five queries
selected from the unified Pareto sets for several Cranfield queries in three of the

5 As the index terms of the training and test documentary bases can be different, there
is a need to translate training queries into test ones, removing those terms without
a correspondence in the test set.
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Table 3. Statistics of the Pareto sets obtained by the MOGA-P algorithm (option D1)

#a| #p | onp |#dp|ogap| M5 |omg | M3 |omg
1 [110.0] 10.5 | 5.3 [0.348[39.901[4.574|0.918]0.044
2 |127.4 7.462 | 4.3 |0.202|47.023|3.235|0.895(0.033
23 |133.8| 5.805 | 6.9 |0.170|52.156/3.004|1.042(0.015
73 | 93.0 |12.435| 2.6 0.210|24.893|5.133/0.730|0.041
157|118.9| 7.886 | 7.8 |0.310|45.264|3.943(1.066|0.006
220( 91.1 | 6.897 | 1.9 {0.221|18.987|4.395(0.437(0.094
225| 98.1 | 6.243 | 2.3 [0.202(22.931|4.266|0.626|0.083

retrieval environments (B2, C1 and D1). In that table, Sz stands for the query
size, P and R for the precision and recall values, and #rr/#rt for the number of
relevant and retrieved documents, respectively. Finally, the following subsections
summarize the conclusions drawn in the different experiments developed.

5.1 Classic IQBE Versus User Profile Test Environments

In the two classic IQBE environments, A and B, both the precision and the
recall of every learned query is always equal to 1 in the training set, regardless
the number of relevant documents. Besides, both values are also very close to 1
in most of the cases in the user profile-based evironment C (see B2 and C1 in
Table 4). However, in the other user profile-based framework D, it is very difficult
to find a query with both recall and precision equal to 1 (see D2 in Table 4).
Hence, as the number of irrelevant documents increases, it is more difficult for
the learned query to only retrieve relevant documents.

On the other hand, in the test results, as the number of irrelevant documents
in the training set increases, the precision values also increase, whereas the recall
values diminish. The reason is that when there are a lot of irrelevant documents
in the test set (a few of them in the training set), the queries get all the relevant
documents by retrieving a very large number of documents, thus obtaining a
very low precision. However, there are cases in option D where the query does
not retrieve any document or just one, showing a usual machine learning phe-
nomenon called over-learning (see the results for query 225 in C1 and D1 in
Table 4).

5.2 50% Relevant Documents Versus 25% Relevant Documents

In both classic IQBE environments (A and B), there is no significant differences
between option 1 (50% of the relevant documents in the training set) and 2
(25%). However, in those based on user profiles (C and D), the differences are
more significant. In both cases, option 1 with more relevant documents in the
training set performs better than the other in the test results. This shows that
the larger the number of irrelevant documents in the training set, the more
relevant documents are needed to get good queries for the test one.
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Table 4. Retrieval efficacy of the selected queries on the training and test collections

Training set Test set

#q Sz| P R |#trr[#rt|Sz| P R |#rr/H#rt
1/{19| 1.0 | 1.0 7/7 19/0.036(0.364| 8/221
2|19 1.0 | 1.0 7/7 19]0.063/0.455| 10/158

1 (3{|19( 1.0 | 1.0 77 1910.057(0.500{ 11/192
4|/19| 1.0 | 1.0 77 1910.062(0.500| 11/176

B 5|15 1.0 | 1.0 7/7 15(0.094/0.636| 14/149
1119 1.0 | 1.0 6/6 17/0.026(0.211| 4/151
2|(17] 1.0 | 1.0 6/6 130.043(0.263| 5/117
225(3|(17| 1.0 | 1.0 6/6 17/|0.021|0.211| 4/193
4((19]| 1.0 | 1.0 6/6 1910.050(0.579| 11/220
5|15 1.0 | 1.0 6/6 150.045(0.579| 11/244
11{19]0.923| 1.0 12/13 |[11|0.096|0.769| 10/104
2((1910.923| 1.0 12/13 |[17|0.131]0.846| 11/84

2 (3(/19]0.923| 1.0 12/13 |/19(0.133(0.769| 10/75
4(119]0.923| 1.0 12/13 1910.110(0.846 11/100
c1 5((19| 1.0 |0.833| 10/10 |/17(0.046]0.231| 3/65
1//19(0.923|1.000| 12/13 ||17(0.016(0.077| 1/61
2|/119]0.923|1.000| 12/13 {|19]0.000|0.000| 0/52
225(3|/19(1.000{0.917| 11/11 ||13|0.017|0.077| 1/60
4(/19(0.800|1.000| 12/15 ||17]0.016{0.077| 1/61
5|/17|1.000{0.833| 10/10 ||11]0.021|0.077| 1/48
11{19]0.299| 1.0 20/67 ||15]0.195| 0.8 16/82
2(119(0.39 | 0.8 16/41 1910.119| 0.25 5/42
157(3(/19|0.593| 0.8 16/27 |[17| 0.3 | 0.3 6/20
4/119]0.789| 0.75 | 15/19 |[15|0.25|0.15 3/12
D1 519 1.0 | 0.5 10/10 |[15|0.375| 0.15 3/8
1|{17]0.324| 1.0 12/37 |[15| 0.0 | 0.0 0/33
2||117]0.324| 1.0 | 12/37 ||15| 0.0 | 0.0 0/33
225(3((19(0.579/0.917| 11/19 |11| 0.0 | 0.0 0/15
4(/19(0.688/0.917| 11/16 ||15| 0.0 | 0.0 0/8
5((19| 1.0 |0.917| 11/11 |/15| 1.0 |0.077 1/1

In addition, option C2 usually presents more queries with precision and recall
values equal to 0, having a stronger over-learning than C1.

6 Concluding Remarks

Several real-like retrieval environments with different characteristics have been
proposed to test IQBE algorithms. The Cranfield collection has been considered
to define several retrieval needs and, for each of them, relevant and irrelevant
documents have been divided into several training-test partitions with a differ-
ent number of documents. Then, a previous multiobjective evolutionary IQBE
proposal for learning fuzzy queries has been tested in the designed environments
analyzing the retrieval efficacy obtained in each case.
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As future works, we will use retrieval measures considering not only the
absolute number of relevant and non relevant documents retrieved, but also
their relevance order in the retrieved document list, which is a fuzzy IR ability
very useful for the user.
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