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Abstract. A critical challenge of the postgenomic era is to understand how 
genes are differentially regulated even when they belong to a given network.  
Because the fundamental mechanism controlling gene expression operates at 
the level of transcription initiation, computational techniques have been devel-
oped that identify cis-regulatory features and map such features into differential 
expression patterns. The fact that such co-regulated genes may be differentially 
regulated suggests that subtle differences in the shared cis-acting regulatory 
elements are likely significant. Thus, we carry out an exhaustive description of 
cis-acting regulatory features including the orientation, location and number of 
binding sites for a regulatory protein, the presence of binding site submotifs, the 
class and number of RNA polymerase sites, as well as gene expression data, 
which is treated as one feature among many. These features, derived from dif-
ferent domain sources, are analyzed concurrently, and dynamic relations are re-
cognized to generate profiles, which are groups of promoters sharing common 
features. We apply this method to probe the regulatory networks governed by 
the PhoP/PhoQ two-component system in the enteric bacteria Escherichia coli 
and Salmonella enterica. Our analysis uncovered novel members of the PhoP 
regulon as and the resulting profiles group genes that share underlying biologi-
cal that characterize the system kinetics. The predictions were experimentally 
validated to establish that the PhoP protein uses multiple mechanisms to control 
gene transcription and is a central element in a highly connected network.   

1   Introduction  

One of the biggest challenges in genomics is the elucidation of the design principles 
controlling gene networks.  However, knowing the connectivity of a given network is 
not sufficient to define the expression dynamics of a group of genes; one also needs to 
specify the strength of the connections in a network, which are determined by the cis-
promoter features participating in the regulation (Fig. 1a-b). 

This work describes a machine learning method [1, 2] that integrates heterogene-
ous domains of knowledge to identify, differentiate and group genes by their expres-
sion patterns within a regulatory network. We encapsulate each source of information 
into model-based features, including fix-length DNA sequence motifs from transcrip-
tion factor binding sites encoded as position weight matrices; variable-length motifs 
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from RNA polymerase encoded as neural network edges; locations of these regulatory 
elements in the chromosome as data distributions encoded into fuzzy sets; and gene 
expression patterns from multiple experiments encoded as temporal vectors.  Fur-
thermore, we account for the variability of the data by treating these features as fuzzy 
(i.e., not precisely defined) instead of categorical entities [3-5]. 

We use conceptual clustering techniques [1] to integrate the regulatory features by 
combining features and promoters1 into dynamic profiles, which are sets of promoters 
sharing a common set of features. The features are treated with equal weight, because 
it is not known beforehand which features are important for a profile to explain a dif-
ferential gene behavior. The formulation of this clustering problem would result in the 
generation of many profiles with small extent, as it is easier to explain or profile-
match smaller data subsets than those that constitute a significant portion of the data-
set. For this reason, our approach also considers additional criteria to extract broader 
profiles based on their size, the number of retrieved profiles, and their diversity and 
extent of overlap [3, 5]. These are conflicting criteria that are formulated as a multi-
objective and multimodal optimization problem [6]. 

We applied our method to characterize a network controlled by the PhoP/PhoQ 
regulatory system of Escherichia coli and Salmonella enterica serovar Typhimurium. 
We could identify key features that enable the PhoP protein to produce distinct kinetic 
patterns in target genes and uncover novel members of the PhoP regulatory network 
[7].  Our approach provides resources for the annotation of genome regulatory regions 
and their compilation in predictive databases. 

2   Methods 

Regulatory networks constitute a typical case of structural data, where genes can be 
viewed as objects described by several features including expression patterns and par-
ticular cis-acting promoter elements.  Promoters are inherently complex combinations 
of objects that, in turn, are described by a number of features.  For example, binding 
sites for one or more transcriptional regulators are characterized by their match to the 
binding motif of the regulators, and their locations relative to each other and to that of 
the RNA polymerase binding site(s).  

The purpose of our proposed method is to identify interesting substructures, here 
termed profiles (i.e., groups of promoters sharing a common set of features), within a 
regulatory network, thus to suggest possible mechanisms by which the respective 
genes are controlled, which can further be used to classify additional (e.g., newly 
identified) promoters. Our method represents, learns and infers from structural data by 
following three main phases: (1) Database representation by modeling the features of 
promoters[8] ; (2) Fusing distinct domain knowledge by dynamic learning profiles; 
and (3) Using the profiles to  predict new members [3].  

                                                           
1 One gene can be regulated by the same transcription factor using more than one binding site.  

We consider each one of them and their corresponding relations with other regulatory ele-
ments as a promoter. 
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2.1   Dataset: Genes from Escherichia Coli and Salmonella Enterica Genomes 

We built models based on microarray expression differed statistically between wild-
type and phoP E. coli strains experiencing inducing conditions for the PhoP/PhoQ re-
gulatory system and additional S. enterica promoters known to be regulated by the 
PhoP protein.  This set of promoters constitutes the 70/30% training and test partitions 
(see [8] for a complete list of promoters as well as the codification for multiples pro-
moters for a single gene). Expression values for Salmonella were inherited from its 
known orthologous genes in E. coli.  Additional data for RNA polymerase and oper-
ons were obtained from RegulonDB database.  

Representing Different Domain Knowledge: Modeling Promoter Features.  We 
focused on four types of features [9] for describing our training set of promoters:  

DNA Binding Site Motifs: (a) Fix-length Hierarchical Motifs: we modeled the PhoP 
box motifs by using position weight matrices2 [10] (Fig. 1c) (see Consensus matrices 
in gps-tools.wustl.edu). Then, we used these preliminary models to describe promot-
ers by using low thresholds corresponding to two standard deviations below the mean 
score obtained with the initial model [11]. We grouped the retrieved observations into 
subsets by using the possibilistic implementation of fuzzy C-means (PCM) [3] and re-
built matrix models for each one (E-value < 10E-22), thus obtaining several more re-
fined models, and increasing the sensitivity to departures from the consensus. These 
multiple matrices constitute the prototypes of the feature: 
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where )( kxM  is the marginal probability of each nucleotide kx  in the k’th position on 

motifs of length K, and i indexes a family of prototypes iM [12].  The degree of mat-

ching between an observation and a feature is measured by its similarity with the pro-
totype by using the informational content scores normalized as fuzzy values in the 
unit interval.  The prototypes can be combined and arranged as a multiclassifier (see 
Bagging consensus in gps-tools.wustl.edu). 

(b) Variable-length Motifs: we gathered sigma 70 promoters [13] from the RegulonDB 
database and built models of the RNA polymerase site using a neuro-fuzzy method 
(see Promoter search (CPR-MOSS) in gps-tools.wustl.edu), and used the resulting 
models to perform genome-wide descriptions of the intergenic regions of the E. coli 
and Salmonella genomes with a false discovery rate <0.001.  The time delay neural 
network constitutes the feature prototype [5] and the scores were also normalized. 

Transcription Factor Binding Site Orientation:  categorical data.  We classified PhoP 
boxes as either in direct or opposite orientation relative to the open reading frame 
(Fig. 1d), and the prototype is a simple Boolean function. 
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RNA Polymerase Distances:  data distributions modeled as fuzzy sets.  We built his-
tograms with the distance between RNA polymerase and transcription factor from in-
formation available in RegulonDB database [13].  We encoded these distributions by 
using fuzzy set representations [5] into close, medium, and remote sets (Fig. 1e). 
These fuzzy sets constitute the prototypes of the feature, and can be viewed as ap-
proximation of data distributions: 
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where x is any distance between the transcription start site of an RNA polymerase bind-
ing site and the center of a transcription factor binding site, and i indexes a family of 
distances mediumclose DD ,  and remoteD .  Initial partitions are learned from the projection 

of the histograms onto the variable domains by simple regression and minimum squared 
methods [14].  The degree of matching between an observation and a prototype is calcu-
lated by specializing a value in a triangular fuzzy membership functions [15]. 

Microarray Expression Data:  collection of fuzzy sets encoded as a fuzzy centroid. 
We clustered PhoP-regulated gene expression levels (Fig. 1f) by using PCM and built 
models for each cluster by calculating its centroid.  These models represent the proto-
types, where the values of the expression feature for each promoter in E. coli is calcu-

lated by its similarity to the centroids iV as a vector of fuzzy sets: 
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where },...,{ 1 kxxx =  corresponds to the expression of a gene in k microarray ex-

periments; iw is the “bandwidth” of the fuzzy set iE ; m is the degree of fuzzification 

which is initialized as 2; the type of norm, determinated by A, is Pearson correlation 
coefficient; and i indexes a family of prototypes iE . 

Composite Features. We combine several features with dependencies between each 
other into more informative models by using AND-connected fuzzy predicates: 

jij

i

iji FFFANDFFFC ∩==),(  (4) 

where iF  and jF  are previously defined features.  Fuzzy logic-based operations, such 

as T-norm/T-conorm, include operators like MINIMUM, PRODUCT, or MAXIMUM, 
which are used as basic logic operators, such as AND or OR, or their set equivalents 
INTERSECTION or UNION [3, 15]. In this work we used the MINIMUN and 
MAXIMUM as T-norm and T-conorm, respectively.  For example, the RNA poly-
merase motif, learned by using a neural network method, it sigma class, identified by  
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using an intelligent parser that differentiates class I from class II promoters, and the 

distance distributions ( remotemediumclose DDD ,, ) between RNA polymerase and transcrip-

tion factor binding sites, learned by using fuzzy set representations [5], are normalized 
and combined into a single fuzzy vector (e.g., lkji TANDDANDRxP =)( ). 

2.2   Fusing Distinct Domain Knowledge: Dynamic Learning Profiles 

Initializing Profiles. Our method independently clusters each type of feature to build 
initial level-1 profiles (Fig. 1g) based on the PCM clustering method and a validity 
index  [3] to estimate the number of clusters, as an unsupervised discretization of the 
features [5, 16]. For example, we obtained five level-1 profiles for the “submotifs” 

feature ),...,( 1
4

1
0 MM (The superscript denotes the level, 1 in this case. The subscript 

denotes the specific profile, with subscript 0 corresponding to profiles containing 
promoters that do not have the corresponding type of feature). 

Grouping Profiles. We group profiles by navigating in a lattice corresponding to the 
feature searching space [1, 2] and systematically creating compound higher level pro-
files (i.e., offspring profiles) based on combining parental profiles, by taking the fuz-

zy intersection (Fig. 1h). For example: level-1: ( 1
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obtained from intersection of the promoter members of level-2- profiles (e.g., 
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1 PE ) and not between those belonging to the initial profiles 

( 1
1E , 1

2M and 1
3P ). This is because our approach dynamically re-discretizes the 

original features at each level and allows re-assignations of observations between sib-
ling profiles.  In this hierarchical process, each level of the lattice increases the num-
ber of features shared by a profile. After searching through the whole lattice space, 
the most specific profiles (i.e., the most specific hypothesis [17]) are found.  As a re-
sult of this strategy, one promoter observation can contribute to more than one profile 
in the same or a different level of the lattice, with different degrees of membership.  
This differentiates our approach from a hierarchical clustering process where, once an 
observation is placed in a cluster, it can only be re-assigned into offspring clusters.  In 
contrast, our approach is similar to optimization clustering methods [18] in that it al-
lows transfers among sibling clusters in the same level.  

Prototyping Profiles. We learn profiles by using the PCM clustering method [3, 4], 
where promoters can belong to more than one cluster with different degrees of mem-
bership, and are not forced to belong to any particular cluster.  This consists of indi-
vidually evaluating the membership of the promoters to each feature, at each level in 
the lattice, and combining the results (equation (4)). 

Selecting Profiles. Profile search and evaluation is carried out as a multi-objective op-
timization problem [5, 6], between the extent of the profile and the quality of matching 
among its members and the corresponding features.  The extent of a profile is calcu-
lated by using the hypergeometric distribution that gives the chance probability (i.e., 
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probability of intersection (PI)) of observing at least p candidates from a set iV of size 

h within another set jV of size n, in a universe of g candidates: 
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where iV is an alpha-cut of the offspring profile and jV is an alpha-cut of the union of 

its parents. The PI  [19] is a more informative measure than the number of promoters 
belonging to the profile, such as the Jaccard coefficient, in being an adaptive measure 
that is sensitive to small sets of examples, while retaining specificity with large data-
sets. 

The quality of matching between promoters and features of a profile (i.e., similar-
ity of intersection (SI)) is calculated using the following equation: 
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where αn  is the number of elements in an arbitrary alpha-cut αU . 
The tradeoff between the opposing objectives (i.e., PI and SI) is estimated by se-

lecting a set of solutions that are non-dominated, in the sense that there is no other so-
lution that is superior to them in all objectives (i.e., Pareto optimal frontier) [5, 6]. 
The dominance relationship in a minimization problem is defined by: 

)()()()( bOajObOaOiiifba jjii <∃≤∀≺  (7) 

where the iO and jO are either PI or SI.  The method applies the non-dominance re-

lationship only to profiles in the local neighborhood or niche [6] by using the hy-
pergeometric metric (equation (5)) between profiles and selecting an arbitrary 
threshold; in this way combining both multi-objective and multimodal optimization 
concepts [6]. 

2.3   Using the Profiles to Predict New Members 

The method uses a fuzzy k-nearest prototype classifier (FKN) to predict new profile 
members using an unsupervised classification method [3] applied to regulatory re-
gions of genomes described by regulatory features.  First, we determine the lower-
boundary similarity threshold for each non-dominated profile.  This threshold is  
calculated based on the ability of each profile to retrieve its own promoters and to dis-
card promoters from other profiles [20].  Second, we calculate the membership of a 
query observation qx to a set of k profiles previously identified and apply a fuzzy OR 

logic operation:  

},..,1{,),...,,( 1 kiiVVxFKN kq ∈=  (8) 
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where },...,{ ,,1, qkqORqi OP μμμ = , μ is calculated based on (equation (4)) in which 

iw (equation (3)) is initialized as: 
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with 't  being the number of distinct features observed in qx  and iV , and f is the 

number of features in common between qx and iV , which are combined to obtain a 

measure of belief or rule weight [2]; 1r and 2r are user-dependent parameters, initial-

ized as 1 if no preference exists between both objectives; and OROP is the Maximum 

fuzzy operator [3, 4]. 

Possibilistic Fuzzy C-means Clustering Method [3, 4]: (i) Initialize },..,{ 10 cVVL = ; 

(ii) while (s<S and ε>− −1ss LL ), where S is the maximum number of iterations; 

(iii) calculate the membership of sU  in 1−sL as in (equation (3)); (iv) update 1−sL  to 

sL with sU  and ∑∑ ==
=

n

k ik

n

k kiki xV
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/ μμ ; (v) iterate. 

3   Results 

We investigated the utility of our approach by exploring the regulatory targets of the 
PhoP protein in E. coli and S. enterica, which is at the top of a highly connected net-
work that controls transcription of dozens of genes mediating virulence and the adap-
tation to low Mg2+ environments [7].  We demonstrated that our method makes pre-
dictions at three levels [8]: (i) it makes an appropriate use of the regulatory features to 
perform genome-wide predictions; (ii) it detects new candidate promoters for a regu-
latory protein; and (iii) it indicates possible mechanisms by which genes previously 
known to be controlled by a regulator are expressed. 

Performance of the Features. We illustrated the performance of the encoded fea-
tures by analyzing three of them..  We evaluated the ability of the resulting models to 
describe PhoP-regulated promoters, we extended the dataset by including 772 pro-
moters (RegulonDB V3.1 database [13]) that are regulated by transcription factors 
other than PhoP (see Search known transcription factor motifs in gps-tools.wustl.edu), 
by selecting the promoter region corresponding to the respective transcription factor 
binding site.  We considered the compiled list of PhoP regulated genes as true positive 
examples and the binding sites of other transcriptional regulators as true negative ex-
amples to evaluate the performance of the submotif feature.  Each matrix threshold 
has been optimized for classification purposes by using the overall performance 
measurement [20] based on the extended dataset.  We found that the PhoP-binding 
site model increases its sensitivity from 66% to 90% when submotifs are used instead 
of a single consensus, while its specificity went from 98% to 97%. This allowed the 
recovery of promoters, such as that corresponding to the E. coli hdeD gene or the 
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Salmonella pmrD, that had not been detected by the single consensus position weight 
matrix model [10] despite being footprinted by the PhoP protein [7, 8].  

The RNA polymerase site feature was evaluated using 721 RNA polymerase sites 
from RegulonDB as positive examples and 7210 random sequences as negative ex-
amples. We obtained an 82% sensitivity and 95% specificity for detecting RNA  
polymerase sites. These values provides an overall performance measurement [20] of 
92% corresponding to a false discovery rate <0.001. In addition, we selected 34 ex-
amples of RNA polymerase sites reported to be of class II, which all differ from the 
typical class I promoter by exhibiting a degenerate -35 sequence motif [21], and ob-
tained 74% sensitivity and 95% specificity.   

Regarding the expression feature, results suggest that the sensitivity of the “expres-
sion” feature can be increased from 45% to the 76% by using the model-based ap-
proach in a complementary fashion to the original statistical approach, by just admit-
ting a limited decrease in specificity.  This approach allowed us to recover additional 
genes (e.g., the hemL and the proP promoters of E. coli) that have expression levels 
too weak to be initially detected using strict statistical filters (35). (see gps-
tools.wustl.edu for predicted features in E. coli and Salmonella). 

Performance of the Profiles. We recovered several profiles, some of which were ex-
perimentally validated [8]. In addition, here we measured the promoter activity and 
growth kinetics for GFP reporter strains with high-temporal resolution to evaluate the 
behavior of the profiles. For example, one of the profiles corresponds to the canonical 
PhoP-regulated promoters (PI=1.57E-4, SI=0.002), and encompasses promoters (e.g., 
those of the phoP, mgtA, rstA, slyB, yobG and yrbL genes) that share the class II RNA 
polymerase sites situated close to the PhoP boxes, high expression patterns, and typi-
cally PhoP box submotif. This profile includes not only the prototypical phoP and 
mgtA promoters [22], but also other promoters, which was not known to be under 
PhoP control. The promoters sharing this profile produced the earlier rise times and 
the higher levels of transcription (Fig. 1i).  Particularly, phoP itself, perhaps affected 
by its autoregulation, generates the top levels of expression during time.  Another pro-
file (PI=3.53E-4, SI=0.032) includes promoters (e.g., those of the mgtC, mig-14, pagC, 
pagK, and virK genes of Salmonella) that share a PhoP boxes in the opposite orienta-
tion of the canonical PhoP-regulated promoters, as well as class I RNA polymerase 
sites situated at medium distances from the PhoP boxes, all of the features dynami-
cally adapted for the current set of genes. This profile, exhibit the latest genes with the 
lowest levels of expression (Fig. 1i). Finally, another profile (PI=0.033, SI=0.044), 
which is slightly different from the former includes promoters (e.g., those of the ompT 
gene of E. coli and the pipD, ugtL and ybjX genes of Salmonella) that although exhibit 
a PhoP binding site in the opposite orientation, preserves the RNA polymerase of the 
canonical PhoP regulated promoters and present an intermediate kinetic behavior.  
The detailed analysis of the gene behavior would not be possible to be obtained by 
just inspecting each features independently, or by considering simple consensus of 
these features.  

Predictions. To evaluate the ability of the method to retrieve PhoP-regulated promot-
ers, we extended the test set by including 487 promoters from the RegulonDB data-
base [13] that are regulated by transcription factors other than PhoP, by selecting the 
promoter region corresponding to the respective transcription factor binding site ±10 
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bp, its corresponding RNA polymerase site ±10 bp and expression levels from our 
own experiments.  The method had a false positive rate of 5.3% and a 93.92% of 
overall performance measurement [20] as a particular correlation coefficient imple-
mentation, with a 94 and 92% specificity = TN/(TN + FP) and sensitivity = TP/(TP + 
FN) respectively, where P is positive examples, N is negative examples, T is true and 
F is false. 
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Fig. 1. Different cis-features participating in the regulation scheme. a-b)Two PhoP proteins had 
binded to a DNA strain and recruited RNA polymerase.  Class I activators bind to upstream lo-
cations.  By contrast Class II activators bind to sites that overlap the target promoter -35 region.  
A PhoP box might be located in the same strain as the polymerase (a) or in the opposite direc-
tion (b).  c) PhoP binding box modeled as position weight matrices shown as logos: The charac-
ters representing the sequence are stacked on top of each other for each position in the aligned 
sequences. The height of each letter is made proportional to its frequency, and the letters are 
sorted so the most common one is on top.  We used these matrices to prototype DNA se-
quences, where its elements are the weights used to score a test sequence to measure how close 
that sequence word matches the pattern described by the matrix.  d) Orientation: The PhoP box 
can be located either in the direct or opposite direction, thus it is modeled as a categorical set.  
e) Distance between PhoP box and transcription start site (+1): The distance is usually between 
20 and 100 bases.  This graph represents the distance histogram and the distribution approxi-
mated by triangular functions.  f) Microarray expression data: The gene expression difference 
between wild-type and phoP E. coli strains experiencing PhoP/PhoQ inducing condition were 
modeled as a vector of fuzzy sets.  g) Database representation: The regulatory features model 
heterogeneous domains corresponding to different cis- and expression descriptions of the PhoP 
regulated promoters by using fuzzy membership values.  Here we exemplify data from DNA 
sequences where the cells represent the degree of matching between a promoter value and the 
model of a feature (red: high; green: low).  This framework facilitates the application of ma-
chine learning methods to extract profiles, which are sets of promoters sharing a common set of 
features.  h) Part of the complete lattice: The method navigates through the feature-space lattice 
generating and evaluating profiles.  Level-1 profiles of each feature are combined to identify 
level-2 profiles, and similarly, level-2 profiles are combined to create level-3 profiles; the ob-
servations can migrate from parental to offspring clusters (i.e., hierarchical clustering), and 
among sibling clusters (i.e., optimization clustering).  i) Transcriptional activity of wild-type 
Salmonella harboring plasmids with a transcriptional fusion between a promoterless gfp gene 
and the Salmonella promoters including phoP (blue), yobG (green), slyB (red), pagC (cyan), 
pagK (magenta) and ugtL (yellow). The activity of each promoter is proportional to the number 
of GFP molecules produced per unit time per cell [dGi(t)/dt]/ODi(t)], where Gi(t) is GFP fluo-
rescence from wild-type Salmonella strain 14028s culture and conditions described in Methods, 
and ODi(t) is the optical density.  The activity signal was smoothed by a polynomial fit (sixth 
order). The genes are evaluated by their rise time and levels of transcriptions. 

4   Discussion 

We showed that our method can make precise mechanistic predictions even with in-
complete input dataset and high levels of uncertainty; making use of several charac-
teristics that contribute to its power: (i) it considers gene expression as one feature 
among many (unsupervised approach), thereby allowing classification of promoters 
even in its absence; (ii) it performs a local feature selection for each profile because 
not every feature is relevant for all profiles [16], and, a priori, it is not know which 
feature is biologically meaningful for a given promoter; (iii) it finds all optimal solu-
tions among multiple criteria (Pareto optimality) [6], which avoids the biases that 
might result from using any specific weighing scheme; (iv) it has a multimodal nature 
that allows alternative descriptions of a system by providing several adequate solu-
tions [5]; (v) it allows promoters to be members of more than one profile by using 
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fuzzy clustering thus explicitly treating the profiles as hypotheses, which are tested 
and refined during the analysis; and (vi) it is particularly useful for knowledge dis-
covery in environments with reduced datasets and high levels of uncertainty. The pre-
dictions made by our method were experimentally validated [8] to establish that the 
PhoP protein uses multiple mechanisms to control gene transcription, and is a central 
element in a highly connected network. These profiles can be used to effectively ex-
plain the different kinetic behavior of co-regulated genes. 
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