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Abstract— Previously we proposed a scheme to generate fuzzy
rule-based multiclassification systems by means of bagging, mutual
information-based feature selection, and a multicriteria genetic algo-
rithm (GA) for static component classifier selection guided by the
ensemble training error. In the current contribution we extend the
latter component by the use of two bi-criteria fitness functions, com-
bining the latter error measure with the selected ensemble likelihood.
A study on four popular UCI datasets with different dimensionalities
is conducted in order to analyze the accuracy-complexity trade-off
obtained by the two GAs, the initial fuzzy ensemble and a single
fuzzy classifier.

Keywords— Bagging, feature selection, fuzzy rule-based multi-
classification systems, genetic selection of individual classifiers, mul-
ticriteria genetic algorithm.

1 Introduction

Multiclassification systems (MCSs) are promising data min-
ing tools dealing with complex classification problems, espe-
cially when the number of dimensions or the size of the data
are really large [1]. They usually combine decision trees [2]
or neural networks [3], but also more recently fuzzy classifiers
[4, 5, 6].

In a previous study [7], we described a methodology in
which classical MCS design approaches such as bagging [8]
and random subspace [2] are used to generate fuzzy rule-based
multiclassification systems (FRBMCSs) using a basic heuris-
tic fuzzy classification rule generation method [9], as well as a
classifier selection technique based on a GA driven by a multi-
criteria fitness function [10]. Later, we improved our method-
ology in [10] using a feature selection approach based on the
Battiti’s method [11] and the GRASP procedure [12]. Finally,
in [13], we extended the genetic selection method by consid-
ering additional error measures.

We drew the conclusion that a feature and instance selection
procedure combined with a simple grid partitioning FRBS is a
good approach to overcome the curse of dimensionality prob-
lem in large datasets while using FRBMCS, mainly due to the
fact that these kind of classifiers are instable enough. Never-
theless, once a set of classifiers has been trained, we still need
to deal with the high number of rules and the correlations be-
tween individual classifiers. This is why a selection of the
classifiers is so crucial. As said before, we already proposed
a GA guided by several single-criteria fitness functions, based
on the training error [10], the likelihood [7], or the Out-Of-
Bag error [13]. This methodology, quite novel in this topic,
lead us to the generation of a compact sets of rules, while still
preserving its accuracy, in a single GA run, without resort-
ing on a Pareto-based multi-objective optimization technique.
However, many experimentations suggested the choice of the

fitness function is very dependent of the problem being solved.
For instance, when using the training error, the accuracies of
two FRBMCSs can be similar or even null, making difficult
for the GA to discriminate between them in order to improve
the generalization ability. On the contrary, using the likeli-
hood alone seems to give bad results on many datasets. This
suggests the fact that a combination of some criteria could be
a good idea to overcome this issue, producing better results
than any criterion in isolation.

The aim of the current contribution is to propose a solution
by exploring two new fitness functions based on a combination
of the training error and the likelihood measures. By doing so,
we will try to combine them using the two most simple ways:
weighted average and lexicographic order (i.e. considering
the optimization of a single criterion, and using the second in
case of tie). Introducing such elaborated method we hope that
it will allow the FRBMCS to deal with high dimensional data.

We aim to check if the new GA fitness functions will per-
form better in terms of accuracy than the previous ones for
some datasets, while still being competitive for the others
datasets. A preliminary study will be conducted on small and
medium size datasets from the UCI machine learning reposi-
tory to test the two new fitness functions in comparison to a
single classifier, the original FRBMCS, and the GA-selected
FRBMCSs using the said fitness functions. Several parame-
ter settings for the global approach (e.g. different granularity
levels as well as different feature selection methods) will be
tested and compared regarding the accuracy and the size of
the rule base obtained by a single classifier and the original
FRBCS ensemble.

This paper is set up as follows. In the next section, existing
GA-based methods to select MCSs are reviewed. Sec. 3 re-
calls our approach for designing FRBMCSs considering bag-
ging and feature selection, while Sec. 4 describes the proposed
multicriteria GA for component classifier selection. The ex-
periments developed and their analysis are shown in Sec. 5.
Finally, Sec. 6 collects some concluding remarks and future
research lines.

2 Related work on genetic selection of MCSs

In general, the selection of a subset of classifiers is done using
the overproduce-and-choose strategy (OCS) [14], in which a
large set of classifiers is produced and then selected to ex-
tract the best performing subset. GAs are a popular technique
within this strategy. In the literature, performance, complex-
ity and diversity measures are usually considered as search
criteria. Complexity measures are employed to increase the
interpretability of the system whereas diversity measures are
used to avoid overfitting.



Among the different genetic OCS proposals, we can remark
the following ones. In [15], a hierarchical multi-objective
GA (MOGA) algorithm, performing feature selection at the
first level and classifier selection at the second level, is pre-
sented which outperforms classical methods for two hand-
written recognition problems. The MOGA allows both per-
formance and diversity to be considered for MCS selection.
In [16] a GA is used to select from seven diversity heuris-
tics for k-means cluster-based ensembles and the ensemble
size is also encoded in the genome. In the study of Martı́nez-
Munoz et al. [17], a GA is compared to five other techniques
for ensemble selection. Even if the performance of the GA
was the worst obtained, they showed that while selecting a
small subset of classifiers, the generalization error was sig-
nificantly decreased. In [18], the authors developed a mul-
tidimensional GA to optimize two weight-based models, in
which the weights are assigned to each classifier or to each
class. They applied their system to 6 different classifiers (only
linear and quadratic classifiers are explored), but on only two
small datasets and without comparing to the results obtained
on a single classifier. Finally, our own previous studies [10, 7]
also consider a multicriteria GA for the ensemble selection in
an OCS fashion, with performance (training error) and com-
plexity as criteria to guide the GA.

In general, the performance obtained with the initial MCS
is outperformed by the ensemble selected by the GA, while
simplifying the system. In our current contribution, we will
confirm this conclusion by the study of two improved fitness
functions mixing the two most used criteria: the accuracy and
the complexity of the classifiers. The fitness function will di-
rectly incorporate one or two accuracy criteria (i.e., the train-
ing error and the likelihood), while the MCS complexity will
be implicitly optimized by the considered coding scheme.

3 Bagging and feature selection-based
FRBMCSs

In this section we will both detail how the individual classi-
fiers and the FRBMCSs are designed. A normalized dataset is
split into two parts, a training set and a test set. The training
set is submitted to an instance selection and a feature selec-
tion procedure in order to provide individual training sets (the
so-called bags) to train simple FRBCSs (through the method
described in section 3.1). The instance selection and the fea-
ture selection procedures are described in section 3.2. After
the training, we got an initial FRBMCS, which is validated us-
ing the training and the test errors (Ensemble Training Error
and Ensemble Test Error), as well as a measure of complex-
ity based on the total number of rules in the FRBCSs. This
ensemble is selected using a multicriteria GA (described in
the next section) guided by two accuracy-based fitness func-
tions. The final FRBMCS is validated using different accuracy
(Training Error, Test Error) and complexity measures (number
of classifiers, total number of rules).

3.1 Individual FRBCS composition and design method

The FRBCSs considered in the ensemble will be based on
fuzzy rules Rj with a class Cj and a certainty degree CFj in
the consequent: If x1 is Aj1 and . . . and xn is Ajn then Class
Cj with CFj , j = 1, 2, . . . , N , and they will take their deci-
sions by means of the single-winner method [9]. This fuzzy

reasoning method has been selected due to its high simplicity
and interpretability. The use of other more advanced ones [19]
is left for future works.

To derive the fuzzy knowledge bases, one of the heuristic
methods proposed by Ishibuchi et al. in [9] is considered.
The consequent class Cj and certainty degree CFj are sta-
tistically computed from all the examples located in a specific
fuzzy subspace D(Aj). Cj is computed as the class h with
maximum confidence according to the rule compatible train-
ing examples D(Aj) = {x1, . . . , xm}: c(Aj ⇒ Class h)
= |D(Aj)

⋂
D(Class h)|/|D(Aj)|. CFj is obtained as the

difference between the confidence of the consequent class and
the sum of the confidences of the remainder (called CF IV

j in
[9]).

This method is good for our aim of designing FRBCS en-
sembles since it is simple and quick. However, it carries two
drawbacks: its low accuracy and the generation of large fuzzy
rule bases. We aim to consider more advanced techniques in
the future.

3.2 FRBMCS design approaches

The generation of the FRBMCSs is performed by means of a
bagging approach combined with a feature selection method
[10]. Three different feature selection methods, random sub-
space and two variants of Battiti’s MIFS, greedy and GRASP,
are considered.

As said before, random subspace [2] is a method in which
we select randomly a set of features from the original dataset.
The greedy Battiti’s MIFS method [11] is based on a forward
greedy search using the Mutual Information measure [20],
with regard to the class. This method selects the set S of the
most informative features about the output class which can-
not be predicted with the already selected features. It uses a
coefficient, β, to set up the penalization on the information
brought by the already selected features.

The MIFS-GRASP variant is an approach where the set
is generated by iteratively adding features randomly chosen
from a Restricted Candidate List (RCL) composed of the best
τ percent decisions according to the Battiti’s quality measure.
Parameter τ is used to control the amount of randomness in-
jected in the MIFS selection. With τ = 0.5, we get an aver-
age amount of randomness, while still preserving the quality-
based ordering of the features.

For the bagging approach, the bags are generated with the
same size as the original training set, as commonly done. In
every case, all the classifiers will consider the same fixed num-
ber of features.

Finally, no weights will be considered to combine the out-
puts of the component classifiers to take the final FRBMCS
decision, but a pure voting approach will be applied: the en-
semble class prediction will directly be the most voted class in
the component classifiers output set.

4 A multicriteria GA-based MCS selection
method

In our previous studies, we used a multicriteria GA, which is
able to obtain a list of possible MCS designs ranked by their
quality from a single chromosome thanks to its novel coding
scheme. However, the fitness function considered was based
on a single criterion, either the likelihood (L) [7], the training



error (TE) [10, 13], or the out-of-bag error [13]. Although
the TE-based GA provided better overall results, the L-based
GA outperformed it in some of the cases. That led us to the
idea of combining the both measures, which moreover show
complementary characteristics.

4.1 Multicriteria genetic optimization

The GA searches for an optimal sequence of the classifiers,
in the way that the most significant classifiers have the low-
est indexes, while those redundant members, which can be
safely excluded, are in the last positions. The coding scheme
is thus based on an order-based representation, a permutation
Π = {j1, j2, . . . , jl} of the l originally generated individual
classifiers. In this way, each chromosome encodes l differ-
ent solutions to the problem, based on considering a “basic”
MCS comprised by a single classifier, that one stored in the
first gene, then another one composed of two classifiers, those
in the first and the second genes, and so on.

So, the computation of the evaluation criteria for the whole
ensemble is obtained in a cumulative way, defined as a vector
containing the measured values of the first classifier; the sub-
set formed by the first and the second; and so on. The fitness
function is thus using the values of a multicriteria vector, being
composed of an array of l values, Li = L′

{j1,j2,...,ji}
, corre-

sponding to the cumulative measure-value of the l mentioned
MCS designs.

At the end of the GA, the best chromosome is that member
in the population overcoming the others using the considered
criterion. Then, the final design encoded in this chromosome
is the MCS comprising the classifiers from the first one to the
one having the the best cumulative measured value (although
any other design not having the optimal accuracy but, for ex-
ample, showing a lowest complexity can also be directly ex-
tracted). In this way, an implicit use of a complexity criterion
is also made.

To increase its convergence rate, the GA works following
a steady-state approach. The initial population is composed
of randomly generated permutations. In each generation, a
tournament selection of size 3 is performed, and the two win-
ners are crossed over to obtain a single offspring that directly
substitutes the loser. In this study, we have considered OX
crossover and the usual exchange mutation [21].

4.2 The two used evaluation criteria

For the definition of the fitness functions, we use TE and L as
the evaluation criteria.

The TE is computed as follows. Let h1(x), . . . , hl(x) be
the outputs of the component classifiers of the selected ensem-
ble for an input value x = (x1, . . . , xn). For a given sample
{(xk, Ck)}k∈{1...m}, the TE of that MCS is:

TE =
1

m
· #{k | Ck 6= arg max

j∈{1...M}

hj(x
k)} (1)

Fitness evaluation using TE alone was already studied in one
of our previous publications [10]. We will call it Training
Error-based Fitness Function (TEFF).

The L is computed as follows. Let the classes
h1(x), h2(x), . . . , hl(x) be the decisions of the component
classifiers of the selected ensemble S for an input value x =

(x1, . . . , xn). We will assume that the fraction of the mem-
bers of S that agree on the class of x is an estimate of the
conditional probability of that class:

PS(C|x) =
1

|S|
· # {i ∈ S | hi(x) = C} .

The L of the subset S, to be maximized, is:

LS =
∏

k

PS(Ck |xk).

As the small values of LS may produce numerical instabil-
ities, we use instead a bounded log-likelihood:

L′
S =

∑

k

log(PS(Ck |xk) + ε),

where the value ε foresees that case for which none of the
members of the subset has found the true class of the pattern.
In [7], we endowed the fitness function with the L, as it allows
us to discern differences between ensembles with the same
TE (specifically, between those with null error!). A learning
process using only the TEFF will automatically end up with
the learning, while L will go on improving the estimations of
the probability distributions for each class, thus reducing the
chances of overfitting the training data.

4.3 The two new bi-criteria fitness functions

In this contribution we propose two approaches for the fit-
ness function combining the L with the TE measure, the Lex-
icographical Order-based Fitness Function (LOFF) and the
Weighted Combination Fitness Function (WCFF).

Notice that, working in this way, we are introducing a sec-
ond multi-criteria optimization level in our algorithm. On the
one hand, a multi-criteria optimization is made by means of
the considered coding scheme and the cumulative evaluation
of the possible MCS designs (see Sect. 4.1). On the other
hand, a higher level is introduced when evaluating the latter
possible designs by means of a bi-criteria fitness function.

In the first one, the LOFF, we use the lexicographical order
to deal with the multicriteria optimization. When comparing
two chromosomes, one is better than the other if it takes a
better (lower) minimum value of the TE. In case of tie, the L
measure is considered. The ordering scheme gives priority to
TE, as it provided better results in our previous study, while
taking the L only in the last resort in the case of the frequent
ties encountered by the system.

In the second approach, the WCFF, we propose objective
function scalarization by a weighted combination of both mea-
sures:

WC = factor0 ∗ α ∗ TE + (1 − α) ∗ L (2)

where α is a weight in [0,1] and factor0 = L0/TE0 is a first
evaluation-based normalization using L0 and TE0, the L and
the TE from the initial FRBMCS. The fitness function is to be
minimized.

5 Experiments and analysis of results

In this section, we discuss the performance obtained by a
single FRBCS, the initial FRBMCS, and three different GA-
selected FRBMCSs including our two new fitness functions
on four chosen datasets.



5.1 Experimental setup

To evaluate the performance of the generated FRBMCSs, we
have selected four datasets from the UCI machine learning
repository (see Table 1). In order to compare the accuracy
of the considered classifiers, we used Dietterichs 5×2-fold
cross-validation (5×2-cv), which is considered to be supe-
rior to paired k-fold cross validation in classification problems
[22].

Table 1: Data sets considered
Data set #attr. #examples #classes

Pima 8 768 2
Glass 9 214 7

Vehicle 18 846 4
Sonar 60 208 2

Three different granularities, 3, 5 and 7, are tested for the
single FRBCS derivation method, for feature sets of size 5
selected by means of three approaches: the greedy Battiti’s
MIFS filter feature selection method [11], the Battiti’s method
with GRASP (with τ equal to 0.5, see section 3.2), and ran-
dom subspace [2]. Battiti’s method has been run by consider-
ing a discretization of the real-valued attribute domains in ten
parts and setting the β coefficient to 0.1.

The FRBMCSs generated are initially comprised by 50
classifiers. The GA for the component classifier selection
works with a population of 50 individuals and runs during 50
generations. The mutation probability considered is 0.05. The
weights of WCFF were set to 0.8 for TE and 0.2 for L as our
aim was to allow a small influence of the L in the cases in
which the TE gives similar values. The other values for the
weights will not improve the results significantly.

All the experiments have been run in a cluster at the Univer-
sity of Granada on Intel quadri-core Pentium 2.4 GHz nodes
with 2 GBytes of memory, under the Linux operating system.

5.2 Comparison of the three fitness functions

The statistics (5×2-cv error, number of rules, and run time
required for each run, expressed in seconds) for the genetically
selected FRBCS ensembles using LOFF, WCFF and TEFF are
collected in Tables 2, 3 and 4 respectively. There are three
subtables for each of the feature selection method considered.
The best results for a given feature selection method are shown
in bold and the best values overall are outlined.

Comparing the three fitness functions, we can see how
the WCFF approach is able to outperform the TEFF and
LOFF considering the individual test error 9 times (+2 draw).
The best individual improvement was observed on the sonar
dataset (-8% regarding LOFF, -4% regarding TEFF) with
greedy and 5 labels. We observed that in 4 out of 9 cases,
WCFF outperforms other approaches on the sonar and pima
datasets. The best overall result was obtained on the pima
dataset with GRASP and 5 labels (draw with LOFF).

The FRBMCSs based on LOFF are better than TEFF and
WCFF in 12 of the 36 cases (+2 draw). The best individual
improvement was observed on the sonar dataset with random
subspace and 5 labels (-9% regarding WCFF, -12% regard-
ing TEFF). The best overall result was obtained on the pima
dataset with greedy and 5 labels (draw with WCFF) and on

the glass dataset with GRASP and 5 labels. We can observe
that in 5 out of 9 cases, LOFF outperforms the other genetic
approaches on the glass dataset.

Comparing the two new fitness functions, the LOFF pro-
vides better results than WCFF considering individual test er-
ror in 21 cases (+ 2 draw). We can also observe that LOFF
outperforms the other approach on the glass dataset in 7 out 9
cases (+1 draw) giving a good performance for the vehicle (7
out 9 cases) datasets. However, the WCFF is better in 6 out of
9 cases on the pima dataset and in 5 out of 9 cases (+1 draw) on
the sonar dataset. In general, LOFF is better than WCFF since
it gives a lower influence to L, whereas the weighted combi-
nation is better on the sonar dataset due to the many ties with
the TE on this dataset, making the use of the L more likely.

The TEFF-based FRBMCSs outperforms the LOFF and the
WCFF considering individual test error for 13 of the 36 times.
The best overall result was obtained on the sonar dataset with
random subspace and 3 labels, and on the vehicle with random
subspace and 7 labels. We may conclude that the LOFF and
WTEL are competitive with TEFF. The LOFF got best results
12 times (+2 draw), WTEL 9 (+2 draw) and TEFF 13 times.
However, in the direct comparison, the use of LOFF improves
the single TEFF performance in 18 out of 36 cases (+3 draw)
and the WTEL improves the single TEFF performance in 19
out of 36 cases, which indicates that L does not produce over-
fitting. Thus, the use of L as a secondary criterion is only
useful in some of the cases.

On 36 cases, the number of classifiers is lower in 12 cases
(+1 draw) with the LOFF, in 9 cases with the WCFF and in
15 cases (+1 draw) with the TEFF. The two new fitness func-
tions generate a higher number of classifier, since they are
more conservative due to the use of L. Such fitness functions
could be viewed as a proper way to improve performance of
the datasets having the larger size.

5.3 Genetically selected FRBMCSs vs. single
FRBCS/original FRBMCSs

The results of the single FRBCSs are presented in Table 5
while those of the original FRBMCSs are presented in Table
6. In all the 36 cases, the generated FRBMCSs improve the
performance of the single FRBCS.

Although the main goal of the genetic selection is to re-
duce the complexity of the generated FRBMCS, the accuracy
results obtained from that process are also improved in most
of the cases, showing the potential of the approach. In only
10 of the 36 cases (+1 draw) the original FRBMCS outper-
forms the best genetically designed one in terms of accuracy.
Comparing the best overall TE values of genetically selected
FRBMCSs with those of the original FRBMCSs, the GA im-
proves the results on the sonar dataset (-2% regarding TEFF)
and glass (-10% regarding LOFF), showing a slight increase
for the other problems (+2% for pima regarding LOFF/WTEL,
+2% for vehicle regarding TEFF).

5.4 Statistical significance of the results

Table 7 shows the results of the statistical tests performed to
check if the performance of the initial FRBMCSs and the per-
formance of the GA selected FRBMCSs outperform signifi-
cantly the performance of the single classifier. The Wilcoxon
signed-rank test [23] has been used for this purpose. The best



Table 2: Results for the FRBCS ensembles selected by the GA using the LOFF
Bagging + Greedy

Pima Glass Vehicle Sonar
5×2-cv 0.257 0.363 0.468 0.246

3 labels #classifiers 3.8 10.1 9.5 8.5
5 #attr. #rules 659.7 1275.9 1298.6 1287.2

avg. #rules 176.6 126.5 138.3 151.0
time 599.57 127.00 665.84 164.46

5×2-cv 0.238 0.374 0.391 0.259
5 labels #classifiers 12.9 8.5 14.0 10.1
5 #attr. #rules 7491.1 2211.3 6711.9 5696.9

avg. #rules 582.0 268.1 482.1 569.4
time 434.14 121.72 487.14 117.84

5×2-cv 0.258 0.387 0.375 0.258
7 labels #classifiers 14.4 9.5 14.0 7.3
5 #attr. #rules 18851.1 3786.4 16266.7 7609.4

avg. #rules 1308.1 400.2 1146.7 1056.8
time 369.73 103.94 405.34 100.18

Bagging + Random Subspace
Pima Glass Vehicle Sonar
0.261 0.375 0.423 0.219
4.0 13.0 14.2 19.9

668.4 1450.0 2336.3 3363.0
167.6 112.5 165.3 169.9

436.40 111.97 482.74 117.36
0.257 0.387 0.374 0.223
12.9 14.2 14.2 14.1

7160.0 3439.0 10374.3 9273.3
550.8 247.5 740.3 680.7

599.22 167.95 665.79 162.04
0.270 0.393 0.347 0.275
15.8 13.4 17.8 6.2

19619.0 5169.0 29596.5 7690.1
1240.5 392.6 1686.0 1234.8
366.53 103.25 407.70 99.94

Bagging + GRASP τ = 0.50
Pima Glass Vehicle Sonar
0.253 0.367 0.440 0.227

4.2 9.1 11.7 12.9
742.4 1162.3 1795.1 2110.9
175.2 125.9 152.0 163.6
534.17 134.80 591.25 144.59
0.240 0.358 0.399 0.234
10.9 16.0 13.4 13.0

6535.1 4190.4 7610.7 8291.5
599.5 271.7 582.1 644.4
370.50 102.98 405.34 100.62
0.258 0.375 0.355 0.250
13.3 9.1 15.5 8.5

17892.8 3738.7 20978.9 10210.4
1338.9 409.5 1386.4 1214.6
498.07 140.94 552.16 135.59

Table 3: Results for the FRBCS ensembles selected by the GA using the WCFF
Bagging + Greedy

Pima Glass Vehicle Sonar
5×2-cv 0.254 0.364 0.488 0.256

3 labels #classifiers 6.2 8.8 15.6 6.8
5 #attr. #rules 1081.6 1139.8 2209.2 1030.0

avg. #rules 174.3 125.4 140.2 153.2
time 401.63 111.35 441.11 108.23

5×2-cv 0.243 0.380 0.395 0.238
5 labels #classifiers 17.4 12.9 14.7 14.9
5 #attr. #rules 10118.3 3438.4 7258.3 8202.4

avg. #rules 589.8 264.5 486.4 566.8
time 383.37 106.09 420.65 102.93

5×2-cv 0.250 0.402 0.368 0.256
7 labels #classifiers 13.8 13.4 12.6 8.0
5 #attr. #rules 17992.3 5231.7 14853.7 8248.2

avg. #rules 1323.8 399.7 1164.6 1053.8
time 372.49 102.26 407.72 100.36

Bagging + Random Subspace
Pima Glass Vehicle Sonar
0.258 0.384 0.430 0.224

6.3 10.5 17.7 22.2
1020.8 1190.4 2944.8 3683.5
161.2 113.1 166.6 171.0

382.65 105.19 419.06 102.40
0.256 0.382 0.372 0.244
16.3 9.2 16.0 19.1

9104.2 2347.5 11739.3 12502.4
550.0 260.3 737.4 674.3

401.48 111.36 441.42 108.02
0.272 0.393 0.353 0.275
16.2 15.1 10.3 6.2

20343.7 5923.8 18443.5 7690.1
1258.5 411.1 1814.7 1234.8
368.65 103.92 408.42 99.82

Bagging + GRASP τ = 0.50
Pima Glass Vehicle Sonar
0.255 0.370 0.459 0.226
7.5 13.9 10.3 10.4

1331.4 1722.5 1587.2 1677.3
172.4 126.3 153.3 167.6

392.34 108.28 428.73 105.53
0.238 0.386 0.401 0.234
14.6 13.0 15.4 22.4

8686.7 3457.0 8947.0 13497.0
593.8 270.3 593.6 622.2

371.67 102.42 411.51 100.52
0.254 0.383 0.363 0.243
14.8 11.7 12.1 9.7

19726.7 4728.6 17199.3 11271.4
1343.0 402.2 1435.8 1173.8
386.31 107.54 425.35 104.44

Table 4: Results for the FRBCS ensembles selected by the GA using the TEFF
Bagging+Greedy

Pima Glass Vehicle Sonar
5×2-cv 0.257 0.360 0.461 0.235

3 labels #classifiers 4.1 7.3 10.3 12.3
5 #attr. #rules 696.5 904.3 1431.0 1842.1

avg. #rules 171.5 125.4 138.3 148.3
time 94.06 26.35 103.26 25.32

5×2-cv 0.242 0.383 0.392 0.247
5 labels #classifiers 11.5 15.9 15.5 10.4
5 #attr. #rules 6744.9 4233.1 7338.4 5757.7

avg. #rules 592.8 268.7 481.9 567.0
time 93.48 26.10 103.48 25.17

5×2-cv 0.258 0.393 0.374 0.258
7 labels #classifiers 12.7 8.9 14.6 6.3
5 #attr. #rules 16614.3 3524.3 16102.3 6427.0

avg. #rules 1313.9 404.5 1115.7 1040.9
time 92.87 26.50 102.90 24.85

Bagging+GRASP τ = 0.50
Pima Glass Vehicle Sonar
0.254 0.372 0.449 0.237
14.4 10.2 12.9 13.9

763.0 1317.9 1991.6 2252.6
174.3 126.0 155.9 161.7
93.37 26.49 102.09 25.18
0.239 0.363 0.399 0.252
10.9 14.7 12.0 7.8

6497.4 3986.7 7227.3 4893.9
593.5 282.0 611.3 630.0
92.58 26.16 103.75 24.86
0.256 0.395 0.356 0.257
16.4 10.3 13.2 6.7

21836.6 4140.6 18296.2 7767.8
1346.2 401.9 1386.5 1148.7
92.49 26.18 102.93 25.31

Bagging + Random Subspace
Pima Glass Vehicle Sonar
0.256 0.381 0.428 0.216

4.2 13.7 13.4 20.1
703.4 1546.0 2239.5 3376.7
168.1 113.1 168.9 168.3
92.77 26.39 103.24 25.08
0.263 0.392 0.378 0.249
11.9 13.7 13.0 9.4

6680.0 3312.2 9455.9 6208.8
555.8 245.0 734.3 668.8
91.47 26.18 104.81 24.83
0.265 0.393 0.337 0.267
17.0 15.5 17.5 6.4

21289.5 5980.6 28854.2 7655.2
1248.4 386.2 1680.2 1203.7
92.31 26.08 103.52 25.19

Table 5: Results for the single FRBCSs with feature selection
Greedy

Pima Glass Vehicle Sonar
3 labels 5×2-cv 0.266 0.446 0.549 0.261
5 #attr. #rules 178.50 135.30 136.40 146.60

time 0.08 0.04 0.12 0.08
5 labels 5×2-cv 0.246 0.376 0.430 0.287
5 #attr. #rules 682.70 291.00 437.60 615.20

time 0.42 0.25 0.65 0.16
7 labels 5×2-cv 0.262 0.414 0.402 0.291
5 #attr. #rules 1600 431.20 1021 1218

time 1.75 1.32 3.27 0.52

GRASP τ = 0.50
Pima Glass Vehicle Sonar
0.267 0.447 0.546 0.316

179.50 137.00 135.80 169.00
0.09 0.04 0.12 0.09
0.246 0.375 0.425 0.314

682.70 293.50 418.90 752.70
0.39 0.26 0.63 0.17
0.266 0.423 0.399 0.317
1599 437.20 907.50 1470
1.71 1.34 3.25 0.55

Random Subspace
Pima Glass Vehicle Sonar
0.265 0.457 0.512 0.319
161.80 109.50 154.50 174.50
0.07 0.03 0.12 0.08

0.262 0.435 0.460 0.329
604.20 259.60 587.80 773.60
0.36 0.24 0.67 0.17

0.276 0.418 0.415 0.340
1432 410.90 1266 1536
1.66 1.32 3.37 0.63

Table 6: Results for the FRBCS ensembles
Bagging+Greedy

Pima Glass Vehicle Sonar
5×2-cv 0.261 0.463 0.525 0.255

3 labels #rules 8578 6208 6843 7282
5 #attr. avg. #rules 171.55 124.16 136.87 145.65

time 3.43 1.51 4.87 2.52
5×2-cv 0.235 0.396 0.400 0.240

5 labels #rules 29405 12877 22177 26769
5 #attr. avg. #rules 588.11 257.54 443.55 535.37

time 17.93 12.11 31.21 6.66
5×2-cv 0.243 0.430 0.375 0.262

7 labels #rules 64891 18633 48479 49587
5 #attr. avg. #rules 1298 372.66 969.58 991.74

time 84.70 67.36 166.51 24.72

Bagging+GRASP τ = 0.50
Pima Glass Vehicle Sonar
0.262 0.464 0.494 0.246
8609 6289 7362 7951

172.18 125.77 147.24 159.03
3.45 1.53 4.91 2.57
0.234 0.405 0.399 0.220
29748 13302 25578 30068
594.95 266.04 511.56 601.36
18.05 12.23 32.79 6.96
0.247 0.425 0.353 0.242
65802 19272 54721 54684
1316 385.45 1094 1094
85.27 68.27 170.48 25.49

Bagging + Random Subspace
Pima Glass Vehicle Sonar
0.299 0.450 0.453 0.250
7936 5671 8008 8174

158.71 113.42 160.16 163.47
3.34 1.49 5.06 2.58
0.260 0.430 0.378 0.221
27199 11998 30799 31824
543.97 239.96 615.97 636.47
17.64 11.94 33.91 7.13
0.263 0.402 0.330 0.241
59824 17999 67936 57298
1196 359.98 1359 1146
82.12 66.06 174.24 25.57

Table 7: Statistical test for the comparison of the single FRBCS and the different FRBMCSs methodology. For each dataset,
the best result is marked (’*’) and the others are compared to it

Best single classifier Best ensemble Best ens. selected Best ens. TEFF
(app./labels) (app./labels) (app./labels/fitness) (app./labels)

Pima Approach GRASP/5 GRASP/5 Greedy/5/LOFF GRASP/5
µ ± σ 0.246 ±0.00991 0.234 ±0.019 0.238 ±0.0167 0.240 ±0.0159

Symbol = * = =
Glass Approach GRASP/5 Greedy/5 Greedy/3/LOFF GRASP/3

µ ± σ 0.375 ±0.0526 0.396 ±0.0568 0.358 ±0.0382 0.360 ±0.0507
Symbol = = * =

Vehicle Approach GRASP/7 Random/7 Random/7/LOFF GRASP/7
µ ± σ 0.399 ±0.0262 0.330 ±0.0179 0.347 ±0.0196 0.337 ±0.0168

Symbol + * = =
Sonar Approach Greedy/3 GRASP/5 Random/5/WCFF GRASP/3

µ ± σ 0.261 ±0.0463 0.220 ±0.0445 0.219 ±0.0264 0.216 ±0.0265
Symbol + = = *



result for each dataset is marked with a star ’*’.
The best results (in average) are always obtained by the ini-

tial or the selected ensembles. Even if they are only signifi-
cant for two datasets, they correspond to those with the largest
dimension. Notice that, on sonar, the GA outperforms sig-
nificantly the single classifier. The initial ensemble outper-
forms the best genetically selected FRBMCSs in one of the
four cases (vehicle), whereas TEFF achieves the best result
for the sonar dataset and WCFF for the sonar.

In the direct comparison, TEFF is the best choice two times
for the vehicle and sonar dataset. The new fitness functions
outperforms one of the four cases for pima with LOFF and
glass dataset with WCFF.

Thus, combining bagging and the GA selection process to
design FRBMCSs performs better for high dimensional prob-
lems with a large number of attributes, producing a smaller
rule base while reducing the test errors in some cases, which
was our original goal. When combining these two techniques
with an advanced feature selection process we also get an im-
provement of the accuracy for datasets with higher dimensions
(glass, vehicle and sonar, see Table 7).

6 Conclusions and future works

In this study, we extended our previously developed method-
ology in which a bagging approach together with a feature se-
lection technique are used to train FRBMCSs, at a later stage
selected by a multicriteria GA. Two new fitness functions were
tested, the LOFF and the WCFF, based on one or two accuracy
criteria (i.e., the training error and the likelihood). The gener-
ated selected FRBCS ensembles are performing correctly on
classification problems with a significant number of features.
By using abovementioned techniques, we would like to obtain
FRCMCS dealing with high dimensional data.

One of the next steps we will consider in the future line is
the design of a generic framework to define the multicriteria
fitness function. At least two different information levels will
be studied: the chromosome and the objective level. Further-
more, we would like to extend this study on larger data sets
(more than 1,000 examples), to study the influence of other
parameters (the GA parameters, the weighting coefficient in
the WCFF, etc.), and to design more advanced genetic MCS
selection techniques (e.g. the use of Pareto-based algorithms).
Analysis of the different fuzzy rule genreation techniques and
introduction a diversity criterion in the algorithm are another
important points for future research.
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