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Abstract—This paper studies the behavior of a multiobjective
Genetic Algorithm for jointly performing a feature selection and
granularity learning for Fuzzy Rule-Based Classification Systems
in the scenario of imbalanced data-sets. We refer to imbalanced
data-sets when the class distribution is not uniform, a situation
that it is present in many real application areas.

We consider two different measures, one for the precision of
the model and other for its complexity as the two objectives
to optimize. In one previous approach, we aggregate these two
measures in a single-objective Genetic Algorithm, and thus, a
multiobjective approach of that Genetic Algorithm would yield
a set of models with different trade-off between high accuracy
and low complexity rather than a unique model, provided by the
single-objective Genetic Algorithm. The experimental analysis,
carried out over a wide range of imbalanced data-sets, shows
that our approach is able to obtain a set of models with good
trade-off between the two objectives considered but it is an open
problem how to select the solution with best prediction ability
from the whole set of solutions obtained.

Index Terms—Fuzzy Rule-Based Classification Systems, im-
balanced data-sets, Multiobjective Genetic Algorithms, feature
selection, granularity level.

I. INTRODUCTION

Fuzzy Rule Based Classification Systems (FRBCSs) are
considered a very useful tool in the framework of compu-
tational intelligence, since they provide a very interpretable
model for the end user [1]. An FRBCS presents two main
components: the Inference System and the Knowledge Base
(KB). The KB is composed of the Rule Base (RB) constituted
by the collection of fuzzy rules, and of the Data Base (DB),
containing the membership functions of the fuzzy partitions
associated to the linguistic variables. The composition of the
KB of an FRBCS directly depends on the problem being
solved. If there is no expert information about the problem
under solving, an automatic learning process must be used to
derive the KB from examples.

The problem of imbalanced data-sets [2] for binary classi-
fication occurs when the number of instances for each class
are very different between them, which can lead to a good
classification of the majority class and a poor accuracy on the
minority examples. Furthermore, the less representative class
is usually the one which has more interest from the point of
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view of the learning task [3]. We must stress the importance of
imbalanced data-sets, since such type of data appears in most
of the real domains of classification such as medical diagnosis,
finances, bioinformatics, image recognition and so on. The
good behavior of FRBCS when dealing with imbalanced data-
sets has been recently analyzed in [4].

Unfortunately, the use of FRBCSs in problems that presents
a high number of features can originate RBs with a large num-
ber of rules, thus presenting a low degree of interpretability
and a possible overfitting (the error over the training data-set
is very low but the FRBCS present a significative decrease on
the prediction ability). This problem can be addressed from a
feature selection process that reduces the number of features
used by the FRBCS.

On the other hand, the number of labels per linguistic
variable (granularity) is an information that has not been
considered to be relevant for the majority of FRBCS learning
methods. The usual way to proceed involves choosing a
number of linguistic terms for each linguistic variable, which is
normally the same for all of them (the most used values are the
odd numbers between 3 and 7). This operation mode to choose
the granularity level is not always appropriate since it has a
significant influence on the FRBCS performance. The fuzzy
partition granularity of a linguistic variable can be viewed
as a sort of context information with a major influence in
the FRBCS behavior. Considering a specific label set for a
variable, some labels can result irrelevant, that is, they can
contribute nothing and even can cause confusion. In other
cases, it would be necessary to add new labels to appropriately
differentiate the values of the variable. The high influence of
granularity in fuzzy modeling has analyzed in [5] and some
approaches for automatic learning of the KB in fuzzy mode-
ling and fuzzy classification include the granularity learning
[6], [7]. In a previous work [8], we analyze the influence
of granularity learning in the performance of FRBCSs for
imbalanced data-sets, and the results obtained show that a
significant improvement in the classification ability is possible
just by learning an adequate number of labels per variable
although the complexity of the model was lightly increased.
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In [9], we proposed a Genetic Algorithm (GA) for jointly
perform a feature selection and a granularity learning, conside-
ring a classical FRBCS learning method to derive the RB, the
Chi et al.’s approach [10]. The main objective of that method
was to obtain FRBCS for imbalanced data-sets with high pre-
diction ability joint with a significative reduction of the model
complexity in order to increase the FRBCS interpretability. To
achieve that purpose, we considered two measures, one for
the model accuracy and the other for the model complexity.
We aggregated this two measures as the final fitness value
of a standard generational GA (single objective). Therefore,
the obtained models will have priority on high accuracy or
low complexity depending on the relative weights of each
measure in the final fitness function. As we were interested
in the model with best prediction ability (highest value for
the accuracy measure over the test data set), we tested various
possibilities for these weighting factors, but the more adequate
values are strongly dependent on the data-set considered. The
results of that proposal were very promising but there were
two drawbacks:

« Selecting the weighting factors. We proposed concrete
values that obtained the best average in prediction ability
of all the executions tested, but each data-set has its own
optimal values.

« The GA provide only one solution. In some cases, de-
signers are more interested in FRBCS with very low
complexity rather than the highest prediction ability and
it is necessary several executions of the GA with different
weighting factors for obtaining the FRBCS desired.

It seems logical that these drawbacks can be avoided
considering the two values of the fitness function as separate
objectives in a Multiobjective Genetic Algorithm (MGA), that
generate a set of FRBCSs with different trade-off between
models with high accuracy (and normally, high complexity)
and models with low complexity (and normally, low accuracy).
The advantages of this approach are the elimination of pa-
rameters (weighting factors) and the extended set of different
solutions obtained in one simple run.

In this paper we study the behavior of a multiobjective
version of the GA presented in [9], using the well known Non
dominated Sorting Genetic Algorithm (NSGA-II) [11]. In the
analysis of results we will study the set of solutions obtained,
with special regard to the relationship between the accuracy
measure for the training data set and the accuracy measure for
the test data set, in order to analyze the possible overfitting.
This study can help us to deal with a new problem that appears
with this multiobjective approach, the difficulty of determining
the prediction ability (accuracy measure for the test data set)
from the whole set of solutions obtained, as we will comment
in the comparison of this approach with other methods that
provide only one solution. There are some recent proposals
that use a multiobjective GA for designing Fuzzy systems in
classification and regression [12], [13], [14], [15], but these
approaches only analyzes the prediction ability in one or a few
solutions of the whole set of solutions provided.

We have selected a large collection of imbalanced data-

sets from KEEL data-set repository! [16] for developing our
experimental analysis. In order to deal with the problem of
imbalanced data-sets we will make use of a preprocessing
technique, the “Synthetic Minority Over-sampling Technique”
(SMOTE) [17], to balance the distribution of training examples
in both classes.

This paper is organized as follows. First, Section II and
Section III introduce, respectively, the preliminary concepts of
FRBCSs and imbalanced data-sets used in this paper. Next, in
Section IV we will expose our proposal, a MGA for feature
selection and granularity learning. Section V describes the
experimental study and finally, in Section VI, some conclusions
will be pointed out.

II. FuzzY RULE BASED CLASSIFICATION SYSTEMS

Any classification problem consists of m training patterns
ZTp = (ZTp1,...,ZTpn), P = 1,2,...,m from M classes where
Tp; 1s the ¢th attribute value (¢ = 1,2,...,n) of the p-th
training pattern.

In this work we use fuzzy rules of the following form for
our FRBCSs:

Rule R; : If z; is Aj; and ...
then Class = C; with RW;

and z,, is A;,

)

where R; is the label of the jth rule, z = (z1,...,2,) is an
n-dimensional pattern vector, A;; is an antecedent fuzzy set,
(' is a class label, and RW; is the rule weight [18]. We use
triangular MFs as antecedent fuzzy sets.

In order to build the RB, we have chosen a classical and
simple FRBCS, following the same scheme as our previous
works [4], [19], [8], [9]: the Chi er al’s rule generation
method [10]. This FRBCS design method is an extension of
the well-known Wang and Mendel method [20] to classification
problems.

III. BASIC CONCEPTS ON IMBALANCED DATA-SETS

Learning from imbalanced data is an important topic that
has recently appeared in the Machine Learning community
[2]. We refer to imbalanced data when the class distribution
is not uniform. In this situation, the number of examples
that represents one of the classes of the data-set (usually the
concept of interest) is much lower than that of the other classes.

Standard classifier algorithms have a bias towards the ma-
jority class, since the rules that predicts the higher number of
examples are positively weighted during the learning process
in favor of the accuracy metric. Consequently, the instances
that belongs to the minority class are misclassified more often
than those belonging to the majority class [21].

We will use the imbalance ratio (IR) [22] as a threshold to
categorize the different imbalanced scenarios, which is defined
as the ratio of the number of instances of the majority class
and the minority class. We consider that a data-set presents a
high degree of imbalance when its IR is higher than 9 (less
than 10% of positive instances).

Uhttp://www.keel.es/dataset.php
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In a previous work on this topic [4], we analysed the coope-
ration of some preprocessing methods with FRBCSs, showing
a good behavior for the oversampling methods, specially in
the case of the SMOTE methodology [17]. We will employ in
this contribution the same SMOTE algorithm in order to deal
with imbalanced data-sets. In short, its main idea is to form
new minority class examples by interpolating between several
minority class examples that lie together. Thus, the overfitting
problem is avoided and causes the decision boundaries for the
minority class to spread further into the majority class space.

Most of proposals for automatic learning of classifiers
use some kind of accuracy measure like the classification
percentage over the example set. However, these measures
can lead to erroneous conclusions working with imbalanced
data-sets since it doesn’t take into account the proportion of
examples for each class. So, in this work we use the Area
Under the Curve (AUC) metric [23], which can be defined as

AUC = 1 + TPra,t; - FP'r‘a,te (2)
where T'P,.:. is the percentage of positive cases correctly
classified as belonging to the positive class and F' P4 is the
percentage of negative cases misclassified as belonging to the
positive class.

IV. MULTIOBJECTIVE GENETIC ALGORITHM FOR
FEATURE SELECTION AND GRANULARITY LEARNING

The proposed method is a multiobjective approach of a
genetic process for the DB learning that allows us to select a set
of variables (feature selection) and learn an adequate number
of labels for each selected variable (granularity learning), that
was proposed in [9]. The possible values considered for
the granularity are taken from the set {2,...,7}. Once the
granularity for each selected feature is determined, the DB is
built. Uniform partitions with triangular membership functions
are considered due to its simplicity. Next, we use a quick
method that derives the fuzzy classification rules and then
the whole KB is obtained. We must recall from a previous
section that the RB learning algorithm used in this work is the
method proposed in [10], that we have called the Chi et al.’s
rule generation method.

We denote our proposal as MGA-FS-GL (Multiobjective
GA for Feature Selection and Granularity Learning). The
main purpose of MGA-FS-GL is to obtain a set of FRBCSs
with different trade-off between good accuracy and reduced
complexity taking the feature selection and granularity learning
as a base. We have used the well known Non dominated
Sorting Genetic Algorithm (NSGA-II [11]) as MGA scheme.
Next, we describe the main components of MGA-FS-GL.

A. Encoding the DB

For a classification problem with N variables, each chro-
mosome will be composed of two parts to encode the relevant
variables and the number of linguistic terms for variable (i.e.
the granularity):

« Relevant variables (CY): the selected features are stored

in a binary coded array of length N. In this array, an 1
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indicates that the correspondent variable is selected for
the FRBCS.

« Granularity level (C'g): the number of labels per variable
is stored in an integer array of length N. The possible
values are taken from the set {2,...,7}.

If v; is the bit that represents whether the variable ¢ is

selected and g; is the granularity of variable ¢, a representation
of the chromosome is shown next:

CV:(U17U27"'7UN) CG:(917927"'79N) C:CVCG

It would be possible to merge both parts considering only
an integer array, for example, including the value 1 as a
placeholder for not using the variable. We use the two parts
coding scheme to assign the same importance to both parts
and to make easy the possibility of removing features as the
mutation on the first part of the chromosome changes a selected
variable for a non selected variable.

B. Initial Gene Pool

The initial population is composed of six groups with a
different number of selected variables. Let g be the cardinality
of the significant term set for the Cy part, in our case g = 6,
corresponding to the six possibilities for the number of labels
(2...7). The generation of the initial population is described
below:

«» In the first group all the chromosomes have all the features
selected that is, Cyy = (1,1,1,...,1). It is composed of
g+10 chromosomes. The first g individuals have the same
granularity in all its variables. For each granularity level,
one individual is created. In the second 10 chromosomes
the granularity level is randomly selected.

» The next four groups have the same structure than the first
group but each one of them with a different percentage of
randomly selected variables (75%, 50%, 25% and 10%).
So, each group has g+ 10 chromosomes (16 in our case).

« The last group is composed for the remaining chromo-
somes, and all of their components are randomly selected.

The minimum number of individuals is the sum of the
chromosomes of the five first groups: (g + 10) x 5 (80 for our
proposal). We try to cover a wide zone of the search space
with this population.

C. Evaluating the chromosome

There are three steps that must be done to evaluate each

chromosome:

« Generate the DB using the information contained in the
chromosome. For all the selected variables (v; = 1),
a uniform fuzzy partition with triangular membership
functions is built considering the number of labels of that
variable (g;).

« Generate the RB by running the the Chi et al.’s method.

« Calculate the two measure values of the resultant FRBCS:

— Accuracy measure: AUC metric over the training
data-set (AUC7p,.).

— Complexity measure: the sum of the granularity
levels of all the selected variables (denoted by Ng



in the following). By using this values as complexity
measure, as an example, the following situations are
considered equivalent:

* Selection of 6 features of granularity 2
* Selection of 4 features of granularity 3
* Selection of 3 features of granularity 4
* Selection of 2 features of granularity 6

Finally, MGA-FS-GL considers two objectives to be mini-
mized:

e 1 — AUCy, (as accuracy objective)
« Ng/N (as complexity objective)

D. Genetic operators

1) Crossover: The crossover works in the two parts of
the chromosome at the same time. Therefore, an standard
crossover operator is applied over Cy and C. This operator
performs as follows: a crossover point p is randomly generated
and the two parents are crossed at the p-th variable (the possi-
ble values for p are {2,..., N}). The crossover is developed
this way in the two chromosome parts, Cy and Cg, thereby
producing two meaningful descendants.

2) Mutation: . Two different operators are used, each one of
them acting on different chromosome parts. A brief description
of them is given below:

o Mutation on Cy: As this part of the chromosome is binary
coded, a simple binary mutation is developed, flipping the
value of the gene.

o Mutation on Cg: The mutation operator selected for Cg
performs a slight change in the selected variable. Once
a granularity level is randomly selected to be muted, a
local modification is developed by changing the number
of labels of the variable to the immediately upper or lower
value (the decision is made at random). When the value
to be changed is the lowest (2) or highest one (7), the
only possible change is developed.

V. EXPERIMENTAL STUDY

We will study the performance of MGA-FS-GL employing
a large collection of imbalanced data-sets with different imba-
lance ratio (IR). We divide the data-sets in two main groups:

« Data-sets with high imbalance :/R > 9
« Data-sets with low imbalance /R < 9

Specifically, we have considered forty-four data-sets with
different IR (twenty-two of each group) from KEEL data-set
repository [16], which are publicly available on the corres-
ponding web-page (http://www.keel.es/dataset.php), including
general information about them. Table I show these data-sets,
where we denote the number of examples (#Ex.), number
of attributes (#Atts.), class name of each class (minority and
majority), class attribute distribution and IR. This table is in
ascendant order according to the IR. For the sake of obtaining
binary imbalanced problems, the positive and negative classes
are defined as the joint of one or more classes, which are
specified in column Class of Table I separated by a semi-
colon. In order to reduce the effect of imbalance, we will

employ the SMOTE preprocessing method [17] for all our ex-
periments, considering only the 1-nearest neighbor to generate
the synthetic samples, and balancing both classes to the 50%
distribution.

To develop the different experiments we consider a 5-folder
cross-validation model, i.e., 5 random partitions of data with a
20%, and the combination of 4 of them (80%) as training and
the remaining one as test. For each data-set we consider the
average results of the five partitions. The data partitions used
in this paper can be found in KEEL-dataset repository [41].

The configuration for the FRBCS is presented in Table II
being “Conjuction operator” the operator used to compute the
compatibility degree of the example with the antecedent of the
rule and the operator used to compute the compatibility degree
and the rule weight. This parameter selection has been carried
out according to the results achieved by the Chi et al.’s method
in our former studies on imbalanced data-sets [4]:

TABLE II
CONFIGURATION FOR THE FRBCS

Product T-norm
Penalized Certainty Factor [18]
Winning Rule

Conjunction operator:
Rule Weight:
Fuzzy Reasoning Method:

The specific parameters setting for the GA of MGA-FS-GL
is listed below, being N the number of variables:

« Number of evaluations: 1000 - V

« Population Size: 100 individuals

» Crossover Probability P, : 1.0

« Mutation Probability P, : 0.2

The final result of MGA-FS-GL is a set of non dominated
solutions i.e., none of them is better than another in the two
objectives. This set is called the Pareto front. The usual way
to analyze the results of a classification model in machine
learning involves a comparison among the obtained model
and the models obtained for other learning methods used in
the specialized literature, including an statistical analysis of
various measures being the prediction ability (in our case, the
AUC'14) the main one. So, only one solution for each data-
set is used in the comparison. In the case of a cross-validation
scheme, it is used the mean of the unique solution obtained
for each combination of training set/test set.

Therefore, it is difficult to show, in the previous way, the
results of MGA-FS-GL because there are not five solutions for
each data-set but five sets of non dominated solutions and the
cardinality of that sets (Pareto fronts) is usually different. Thus,
it is not possible to establish a comparison among the five
sets of FRBCSs obtained for each data-set due to the different
number of non dominated solutions and it is not possible
to compare one solution (obtained for the reference models)
opposite to a set of solutions. A possible way to deal with
this problem was proposed in [12], where three different non
dominated solutions were selected from the whole Pareto fronts
and then, these models can be used as individual solutions for
comparison with classical methods:

« The best solution for the accuracy objective (greatest

value in AUC'r,.), named best accuracy (BA)
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TABLE I

SUMMARY DESCRIPTION FOR IMBALANCED DATA-SETS

Data-set [ #Ex. | #Atts. | Class (min., maj.) [ %Class(min.; maj.) | IR
Data-sets with ow Imbalance (IR 1.5 to 9)
Glassl 214 9 (build-win-non_float-proc; remainder) (35.51, 64.49) 1.82
EcoliOvs1 220 7 (im; cp) (35.00, 65.00) 1.86
Wisconsin 683 9 (malignant; benign) (35.00, 65.00) 1.86
Pima 768 8 (tested-positive; tested-negative) (34.84, 66.16) 1.90
IrisO 150 4 (Iris-Setosa; remainder) (33.33, 66.67) 2.00
GlassO 214 9 (build-win-float-proc; remainder) (32.71, 67.29) 2.06
Yeastl 1484 8 (nuc; remainder) (28.91, 71.09) 2.46
Vehiclel 846 18 (Saab; remainder) (28.37, 71.63) 2.52
Vehicle2 846 18 (Bus; remainder) (28.37, 71.63) 2.52
Vehicle3 846 18 (Opel; remainder) (28.37, 71.63) 2.52
Haberman 306 3 (Die; Survive) (27.42, 73.58) 2.68
Glass0123vs456 214 9 (non-window glass; remainder) (23.83, 76.17) 3.19
VehicleO 846 18 (Van; remainder) (23.64, 76.36) 3.23
Ecolil 336 7 (im; remainder) (22.92, 77.08) 3.36
New-thyroid2 215 5 (hypo; remainder) (16.89, 83.11) 4.92
New-thyroid1 215 5 (hyper; remainder) (16.28, 83.72) 5.14
Ecoli2 336 7 (pp; remainder) (15.48, 84.52) 5.46
Segment) 2308 19 (brickface; remainder) (14.26, 85.74) 6.01
Glass6 214 9 (headlamps; remainder) (13.55, 86.45) 6.38
Yeast3 1484 8 (me3; remainder) (10.98, 89.02) 8.11
Ecoli3 336 7 (imU; remainder) (10.88, 89.12) 8.19
Page-blocks0 5472 10 (remainder; text) (10.23, 89.77) 8.77
Data-sets with High Imbalance (IR higher than 9,
Yeast2vs4 514 8 (cyt; me2) (9.92, 90.08) 9.08
Yeast05679vs4 528 8 (me2; mit,me3,exc,vac,erl) (9.66, 90.34) 9.35
VowelO 988 13 (hid; remainder) (9.01, 90.99) 10.10
Glass016vs2 192 9 (ve-win-float-proc; build-win-float-proc, (8.89, 91.11) 10.29
build-win-non_float-proc,headlamps)
Glass2 214 9 (Ve-win-float-proc; remainder) (8.78, 91.22) 10.39
Ecoli4 336 7 (om; remainder) (6.74, 93.26) 13.84
Yeastlvs7 459 8 (vac; nuc) (6.72, 93.28) 13.87
ShuttleOvs4 1829 9 (Rad Flow; Bypass) (6.72, 93.28) 13.87
Glass4 214 9 (containers; remainder) (6.07, 93.93) 15.47
Page-blocks13vs2 472 10 (graphic; horiz.line,picture) (5.93, 94.07) 15.85
Abalone9vs18 731 8 (18;9) (5.65, 94.25) 16.68
Glass016vs5 184 9 (tableware; build-win-float-proc, (4.89, 95.11) 19.44
build-win-non_float-proc,headlamps)
Shuttle2vs4 129 9 (Fpv Open; Bypass) (4.65, 95.35) 20.5
Yeast1458vs7 693 8 (vac; nuc,me2,me3,pox) (4.33, 95.67) 22.10
Glass5 214 9 (tableware; remainder) (4.20, 95.80) 22.81
Yeast2vs8 482 8 (pox; cyt) (4.15, 95.85) 23.10
Yeast4 1484 8 (me2; remainder) (3.43, 96.57) 28.41
Yeast1289vs7 947 8 (vac; nuc,cyt,pox,erl) (3.17, 96.83) 30.56
Yeast5 1484 8 (mel; remainder) (2.96, 97.04) 32.78
Ecoli0137vs26 281 7 (pp,imL; cp,im,imU,imS) (2.49, 97.51) 39.15
Yeast6 1484 8 (exc; remainder) (2.49, 97.51) 39.15
Abalone19 4174 8 (19; remainder) (0.77, 99.23) 128.87

« The solution with the worst value for the accuracy
objective (lowest value in AUCT,). So, the one with
the less value for the complexity objective, named best
interpretability (BI)

« The solution with the intermediate value for both objec-
tives, named intermediate (I)

Therefore, these chosen solutions can be considered a brief
sample of the whole set of solutions with different trade-
off between accuracy and interpretability. Table III present
the detailed results for these three selected solutions, showing
the expected trend in the prediction ability: the most accurate
solutions present certain overfitting. The intermediate solutions
have a better behavior, since they present a good prediction
ability (AUC'ps; lightly worse than the previous) and better
interpretability (less number of rules) than the previous. The
solutions with best interpretability have a very poor prediction
ability since they are models with very few number of rules

(normally, with only one feature selected).

One way to obtain more accurate solutions with good
interpretability is to choose the FRBCS with at least two
variables selected, and with the lowest value for the complexity
measure. In fact, it would be easy to change MGA-FS-GL to
ignore the models with only one selected feature, reducing
the search space. However, we think that it is interesting to
obtain these models as they provide information on what is
the most relevant variable and, in some data-sets, the solution
with best interpretability present a good prediction ability
(Yeast6, Yeast2vs4) and the best prediction ability in one case
(Yeast05679vs4).

Now, We will compare these solutions of MGA-FS-GL with
the models obtained for the following methods:

« The method proposed in [9] (denoted GA-FS-GL). The
single objective GA version of MGA-FS-GL where the
fitness function is the weighted aggregation of the two
objective values.
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TABLE III
DETAILED TABLE OF RESULTS FOR THE SELECTED SOLUTIONS OF MGA-FS-GL

Dataset Best-Accuracy Intermediate Best-Interpretability [ #Non-Dom.
| Aucr, | Aucrsy | #Rules || Aucr, [ Aucrsy | #Rules |[ Aucr, [ Aucrsy | #Rules ||
Data-Sets with Low Imbalance (1.5 <= IR < 9)
Glassl 83.14 62.85 79.20 72.86 65.93 33.20 49.75 48.31 1.60 10.40
EcoliOvs1 98.70 95.66 62.80 84.40 86.58 12.40 66.34 66.22 2.00 6.20
Wisconsin 99.94 52.25 400.60 94.61 90.30 249.80 46.57 45.88 2.80 12.60
Pima 88.35 66.50 527.20 78.02 69.30 242.80 58.24 56.94 1.80 15.00
IrisO 99.63 99.50 9.20 95.38 93.50 5.20 88.00 88.00 2.00 4.80
Glass0 85.64 71.75 99.60 74.12 72.32 27.80 50.00 50.00 3.00 7.20
Yeast2 74.42 69.86 319.60 69.81 68.46 94.00 55.31 54.30 2.20 10.20
Vehicle2 98.12 86.64 798.60 86.21 81.62 397.60 49.86 49.77 1.80 12.20
Vehiclel 94.62 67.09 823.20 73.96 64.67 397.20 50.11 50.44 1.20 18.00
Vehicle3 94.82 60.77 829.80 73.04 65.25 448.60 50.00 50.00 1.60 17.80
Haberman 73.68 55.02 63.20 65.58 61.50 14.40 51.64 46.75 2.20 11.00
Glass0123vs456 99.29 78.67 105.20 89.35 87.42 29.00 47.24 47.23 4.20 11.40
VehicleO 98.47 84.23 818.00 87.59 85.60 306.80 50.00 50.00 6.00 16.40
Ecolil 94.31 84.88 132.80 80.60 78.57 31.00 75.70 75.57 2.00 10.00
New-Thyroid2 99.31 96.63 39.60 91.01 92.66 12.40 76.56 77.14 2.00 7.20
New-Thyroid1l 99.93 93.45 47.00 92.50 88.06 11.40 76.55 76.83 2.00 7.60
Ecoli2 95.14 84.77 155.60 87.69 84.74 32.20 49.84 46.73 4.40 10.40
SegmentQ 99.41 97.62 801.60 88.31 87.90 496.60 52.06 51.73 3.00 12.60
Glass6 98.59 84.23 107.20 94.45 86.80 53.80 64.88 66.22 2.00 9.80
Yeast3 94.79 91.41 334.80 83.41 83.40 79.80 61.37 60.94 2.00 8.20
Ecoli3 95.93 89.65 154.80 88.87 89.62 21.40 79.23 79.03 2.00 9.00
Page-Blocks0 89.74 87.27 292.20 81.17 80.04 48.80 49.93 49.82 2.40 12.00
Mean 93.45 80.03 318.26 83.31 80.19 138.46 59.05 58.54 2.46 10.91
Data-Sets with High Imbalance (IR >= 9
Yeast2vs4 95.20 86.86 205.80 90.34 89.04 25.40 82.32 81.96 2.00 8.80
Yeast05679vs4 90.96 73.72 248.40 83.42 76.17 95.00 79.60 79.54 2.00 11.60
Vowel0 99.92 95.55 698.40 95.42 93.99 278.80 49.99 50.00 1.20 17.20
Glass016vs2 83.73 58.52 95.00 70.91 60.64 31.60 49.93 50.00 2.00 12.80
Glass2 83.63 55.83 96.00 60.61 55.96 51.40 49.94 50.00 2.20 10.60
Ecoli4 98.62 89.81 110.20 85.86 78.88 15.80 49.92 49.69 4.00 11.00
shuttleOvs4 99.98 99.10 32.00 99.66 99.11 7.80 50.00 49.58 1.40 5.60
yeastB1vs7 86.98 67.21 210.60 72.20 71.48 34.60 61.79 60.61 2.00 12.00
Glass4 99.38 86.43 114.00 82.27 78.77 38.20 16.92 16.93 3.00 11.20
Page-Blocks13vs4 99.30 94.30 133.60 79.86 80.49 95.20 50.00 50.00 2.00 8.80
Abalone9-18 79.59 73.24 131.40 55.79 54.91 3.20 50.00 50.00 2.80 8.40
Glass016vs5 98.57 83.43 120.00 94.57 87.57 77.40 50.00 50.00 3.20 14.20
shuttle2vs4 100.00 89.18 24.60 81.35 76.80 5.00 49.59 50.00 4.00 7.80
Yeast1458vs7 86.14 64.84 284.80 71.97 64.41 60.00 60.98 61.74 2.00 12.60
Glass5 98.90 73.90 100.00 88.61 77.20 27.40 56.95 57.56 4.40 10.40
Yeast2vs8 89.00 70.55 136.20 74.52 73.52 24.60 50.39 44.82 2.20 9.60
Yeast4 90.14 85.15 318.40 83.41 81.15 53.00 49.94 49.86 4.00 10.40
Yeast1289vs7 84.99 74.45 233.80 66.05 64.96 42.60 59.55 60.56 2.00 11.00
Yeast5 96.94 92.81 281.80 90.13 89.41 56.40 51.19 50.52 3.00 6.80
Yeast6 93.05 88.06 229.40 87.92 88.04 16.60 86.76 86.83 2.00 6.40
Ecoli0137vs26 97.72 70.45 148.60 90.53 81.54 23.80 50.05 50.00 3.00 10.00
Abalone19 80.09 62.56 267.20 69.92 67.93 63.00 55.19 55.09 2.00 9.20
Mean 92.40 78.91 191.83 80.70 76.91 51.22 55.04 54.79 2.56 10.29
All Data-Sets
Global [ 9293 [ 7947 ] 25505 ] 8200 [ 7855 [ 9484 [ 5705 [ 5666 [ 251 [ 10.60

« The original Chi et al.’s method [10], where a previous
definition for the DB is needed, normally by the use of
uniform fuzzy partitions with the same number of labels
in all the variables. Therefore, it is necessary to choose
a number of labels, being the usual values employed for
any standard FRBCS approach in the specialized literature
3, 5 and 7 labels per variable. According to this fact, we
include these three possibilities in the experimental study.
In the latter, we will refer these methods as G3-Chi, G5-
Chi, G7-Chi, respectively.

« The method proposed in [8] (denoted GA-GL), that uses
a single objective GA (similar to the used in GA-FS-GL)
only for granularity learning.

o C4.5 [24], a method of reference in the field of classifi-
cation with imbalanced data-sets [25], [22].

All the previous methods have all the variables selected
except GA-FS-GL, that includes a feature selection in the

same way as MGA-FS-GL. The FRBCS approaches (GA-FS-
GL, GA-GL, G3-Chi, G5-Chi and G7-Chi) have the same
configuration as MGA-FS-GL (Table II)

Table IV shows the mean of the AUC and the number
of rules (NR) for the different groups of data-sets (Low
imbalance, High Imbalance and all of them). There are three
lines for MGA-FS-GL, corresponding with the three solutions
selected: best accuracy (BA), intermediate (I) and best inter-
pretability (BI).

As can be observed in Table IV for all the data-sets,
the single objective version of the genetic learning process
described (GA-FS-GL) presents the best results. Its prediction
ability is better than the other methods except for GA-GL. A
GA designed only for granularity learning (GA-GL) obtains
the best results in prediction ability but with a high increase
of the number of rules (less interpretability). Regarding to the
complexity of the models (lower NR), GA-FS-GL presents
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TABLE IV
AVERAGE TABLE OF RESULTS IN AUC,., AUCTs¢ AND NUMBER OF RULES (/N R) FOR THE DIFFERENT DEGREES OF IMBALANCE

Algorithm Low Imbalance High Imbalance All Data-sets

AUCr, | AUCr4 NR AUCr, | AUCr4 NR AUCr, | AUCT4 NR
G3-Chi 86.03 82.14 124.70 85.09 80.52 68.67 85.56 81.33 96.69
G5-Chi 91.60 81.43 276.93 89.56 78.76 160.20 90.58 80.10 218.56
G7-Chi 93.95 74.40 387.18 93.66 74.90 272.02 93.81 74.65 329.60
GA-GL 92.03 84.20 177.41 91.33 81.98 82.36 91.68 83.09 129.89
GA-FS+GL 85.77 83.53 26.98 85.33 80.91 12.79 85.55 82.22 19.89
C4.5 95.00 86.09 26.05 95.93 78.25 22.45 95.46 82.17 24.25
MGA-FS+GL(BA) 93.45 80.03 318.26 92.40 78.91 191.83 92.93 79.47 255.05
MGA-FS+GL(I) 83.31 80.19 138.46 80.70 76.91 51.22 82.00 78.55 94.84
MGA-FS+GL(BI) 59.05 58.54 2.46 55.04 54.79 2.56 57.05 56.66 2.51

the lesser number of rules, except for the solution with best
interpretability of MGA-FS-GL, that presents the worse value
for the prediction ability. The improvement of GA-FS-GL in
the number of rules is even better in the group of data-sets with
high imbalance, demonstrating its suitability to the framework
of imbalanced data-sets.

Anyway, None of the three selected solutions of MGA-
FS-GL obtain better results on AUCp,; than the obtained
with GA-FS-GL (considering the weighting factors proposed
in [9]). However, MGA-FS-GL provide models with very good
prediction ability in each Pareto front. If we chose the solutions
with best AUCrp,; for each set of non dominated solutions,
the global mean of the AUCTg, for all the data-sets would
be 86.32, significantly higher than those obtained with GA-
FS-GL and the other methods used for comparison. Hence,
MGA-FS-GL performs very well, but the unsolved problem is
to find these solutions with the best prediction ability as they
occupy different positions along the Pareto front of each data-
set. This situation is represented in Figure 1 where the Pareto
fronts obtained for MGA-FS-GL in the first partition of four
problems are showed (including also the AUC'pg; of each non
dominated solution). There are different “types” of behavior
among the data-sets regarding to the values of AUCr;:

« In some cases, the values of AUCp,; follow the same
trend as AUC'p, (Vowel0). In such data-sets, the trade-
off between accuracy and interpretability is also fulfilled
for the AUCT,; and the final user can choose the most
suitable FRBCS (depending on his preferences) assuming
that AUCyp, is similar to the prediction ability in all
models. Unfortunately, this situation occurs only in a few
data-sets.

« Many data-sets present overfitting, the AUCpg; is then
increased from the FRBCS with best AUCp, to an
optimal value from which descends again. This point
corresponds to a particular combination of weights in
GA-FS-GL, which is specific for each data-set. Therefore,
finding this value is a difficult problem to solve. In some
cases there are a great overfitting in the solutions with best
AUCy, (Wisconsin) while in other cases the overfitting
is lesser and there is a smooth decrease of the AUC'r,
from the optimal value (Ecoli3).

« Finally, in other cases, the AUCr; follows a chaotic be-
havior (Glass4). So, the data fracture between the training

set and the test set is very high and it is impossible to
determine the solution with best prediction ability.

As most of the data-sets belong to one of the last two
“types”, we recommend using GA-FS-GL when the main
purpose is to obtain only one model with high prediction ability
(and not much complexity), unless there are some evidence to
establish that the problem belongs to the first category of the
previously described. MGA-FS-GL is particulary useful when
many solutions with different trade-off between accuracy and
interpretability is required, but it is very difficult to find the
solution with best prediction ability, as that measure can not
be used in the learning process. Moreover, it is difficult to
know the behavior of the accuracy measure in the test data set
(compared with the known behavior in training data set), that
it would be valuable for selecting the most adequate solution if
we were interested, for example, in a solution with a minimum
degree of interpretability.

VI. CONCLUSIONS

This contribution analyzes the behavior of a multiobjective
version of a previously proposed Genetic Algorithm to design
FRBCS for imbalanced data-sets. The genetic learning process
is used for feature selection and granularity learning, which is
combined with an efficient fuzzy classification rule generation
method to obtain the complete KB of the FRBCS.

The proposed approach obtains a set of FRBCSs with di-
fferent trade-off between accuracy and interpretability in which
to find the model with the best prediction ability generally is
non evident.
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