
Chi-Spark-RS: an Spark-built Evolutionary Fuzzy
Rule Selection Algorithm in Imbalanced

Classification for Big Data Problems
Alberto Fernandez and Eva Almansa and Francisco Herrera

Dept. of Computer Science and Artificial Intelligence
University of Granada, Granada, Spain

Emails: alberto@decsai.ugr.es, eva.m.almansa@gmail.com, herrera@decsai.ugr.es

Abstract—The significance and benefits of addressing classi-
fication tasks in Big Data applications is beyond any doubt.
To do so, learning algorithms must be scalable to cope with
such a high volume of data. The most suitable option to reach
this objective is by using a MapReduce programming scheme, in
which algorithms are automatically executed in a distributed and
fault tolerant way. Among different available tools that support
this framework, Spark has emerged as a “de facto” solution when
using iterative approaches.

In this work, our goal is to design and implement an Evolution-
ary Fuzzy Rule Selection algorithm within a Spark environment.
To do so, we build different local rule bases within each Map
Task that are later optimized by means of a genetic process.
With this procedure, we seek to minimize the total number
of rules that are gathered by each Reduce task to obtain a
compact and accurate Fuzzy Rule Based Classification System.
In particular, we set the experimental framework in the scenario
of imbalanced classification. Therefore, the final objective will
be analyzing the best synergy between the novel Evolutionary
Fuzzy Rule Selection algorithm and the solutions applied to cope
with skewed class distributions, namely cost-sensitive learning,
random under-sampling and random-oversampling.

I. INTRODUCTION

We are in a world of Big Data where knowledge is power
[1]. The large volume of information from which to extract this
novel knowledge implies a strong scalability constraints for
standard learning algorithms [2]. To cope with this problem,
the distributed and fault-tolerant MapReduce programming
framework has emerged to fill this gap in terms of compu-
tational time [3]. Among several platforms that implements
this scheme, Spark must be stressed as the most appropriate
solution for iterative-type algorithms [4].

In this work, we focus on the classification task for Big
Data problems, and in particular we study the scenario of
imbalanced datasets [5]. This kind of problems are defined by
having a skewed class distribution, where minority class in-
stances are commonly more difficult to identify than majority
ones. To manage the bias of standard classification algorithms
towards the majority class, different kind of solutions have
been applied [6]: (1) solutions at the data level that increase or
reduce the number of instances of the set of the training set; (2)
at the algorithm level, where the components of an algorithm
are altered so that the minority class becomes more relevant;
and (3) cost-sensitive solutions, which alter the procedure
algorithm by assigning a higher cost to the minority class.

Among the different techniques for learning classification
systems, Fuzzy Rule Based Classification Systems (FRBCS)
[7] are considered an effective approach to model complex
problems. In particular, they have shown to be quite effective
in the context of Big Data problems [8], mainly due to
their flexibility and good coverage of the problem space by
means of their Knowledge Base (KB). Additional advantages
from the use of fuzzy logic are a proper management of the
uncertainties derived not only from the collected data, but also
for the application of the algorithm themselves [9]. Finally, the
use of linguistic fuzzy labels allows for a simpler aggregation
of the local models learned during the MapReduce procedure.

The first FRBCS adapted to the MapReduce scheme for
a Big Data environment was the Chi-FRBCS-BigData [10].
An extension of the former approach, known as Chi-FRBCS-
BigDataCS was released to address imbalanced classification
by means of a cost-sensitive learning within the rule weights
computation [11]. Newer models are based on fuzzy decision
trees [12], in which the fuzzy entropy is applied for definition
of strong fuzzy partitions seeking to provide better contextu-
alization of the classification systems into the problem space.

We observe the need of carrying out an in depth learning
of the components of FRBCSs in order to reach a superior
performance. In this sense, Evolutionary Fuzzy Systems (EFS)
[13] are a valuable tool to obtain the optimal parameters in the
building process of an FRBCS, or to tune some of its com-
ponents. However, being based on the use of an evolutionary
procedure, an efficient integration for their application in Big
Data problems is not straightforward. Therefore, few works
are yet developed in this area of research [14], [15].

This contribution proposes the design of an Evolutionary
Fuzzy Rule Selection algorithm that allows an improvement of
the Chi-FRBCS-BigData models in terms of both performance
and compactness of the final Rule Base (RB). To do so, we
will comprise a rule selection procedure within each Map task.
The success of this approach is based on the following issues:

1) Local models within the subprocesses of each Map may
include outliers examples that derive non-relevant rules
that must be discarded.

2) Each Map may generate a high number of rules, many
of which can be repeated among different nodes. Giving
the Reduce task a lower number of rules will improve

the efficiency of the process, as well as simplifying
the computation of the proper rule weights in this
aggregation step.

3) When addressing an imbalanced problem, the weights
associated to minority class rules are usually lower than
those for the majority class. In case rules with the same
antecedent but different consequent are merged in the
Reduce task, majority class ones are more likely to be
finally included into the RB.

As stated at the beginning of this work, to assess the proper
efficiency in terms of learning time, we must implement our
novel approach within the Spark framework. Being built on
top of the Chi-FRBCS-BigData implementations, and taking
into account that these were developed in Hadoop [16], the
first step is to adapt the FRBCSs into this new programming
tool by using RDDs so to avoid a high disk overhead. We have
noted this novel approach as Chi Spark implementation with
Rule Selection (Chi-Spark-RS), being available at GitHub1.

Our final objective is to analyze the behavior of the FRBCS
learned by Chi-Spark-RS under four different case studies in
imbalanced classification: applying the learning procedure di-
rectly over the original dataset, using a cost-sensitive learning
procedure, and applying both random undersampling (RUS)
and random oversampling (ROS) to balance the training set.

To carry out this research, this document is divided as
follows. Section II presents the preliminaries on imbalanced
classification. Next, Section III introduces the baseline learn-
ing algorithms for FRBCS in Big Data. Section IV contains
the core of this work, describing our Chi-Spark-RS proposal.
Then, Section V contains the experimental study to validate the
behavior of this novel algorithm. Finally, Section VI presents
the conclusions and future work.

II. CLASSIFICATION WITH IMBALANCED DATASETS

The task of classification in imbalanced domains is defined
when the elements of a dataset are unevenly distributed among
the classes [5], [6]. The majority class, as a result, overwhelms
standard learning classification algorithms skewing their per-
formance towards it. The main reason is due to the use of
general metrics, such as the percentage of correctly classified
observations. In the case of imbalanced datasets, the effect of
the minority class hits to the overall accuracy holds a minimum
effect, causing a bias to the coverage of the majority class
instances, as it was pointed out previously.

Specific methods must be applied so that traditional clas-
sifiers are able to deal with the imbalance between classes.
Three different methodologies are commonly followed to cope
with this problem [5], [6]: data level solutions that rebalance
the training set, algorithmic level solutions that adapt the
learning stage towards the minority classes, and cost-sensitive
solutions which consider different costs with respect to the
class distribution.

Among these methodologies, those based on resampling the
dataset are widely used, mainly since they are not linked with

1https://github.com/aFdezHilario/Chi-Spark-RS

a single classifier. At this point, three different schemes can
be applied: undersampling of the majority class examples,
oversampling of the minority class examples, and hybrid
techniques.

The simplest approach, RUS, removes instances from the
majority class usually until the class distribution is completely
balanced. However, this may imply ignoring significant exam-
ples from the training data. On the other hand, ROS makes
exact copies of existing minority instances. The hitch here is
that this method can increase the likelihood of overfitting, as it
tends to strengthen all minority clusters disregard their actual
contribution to the problem itself.

III. FUZZY RULE BASED CLASSIFICATION SYSTEMS FOR
BIG DATA

The methodology proposed in this work is settled on
the basis of the pioneer fuzzy rule learning algorithms for
Big Data, namely Chi-FRBCS-BigData [10] and Chi-FRBCS-
BigDataCS [11]. As their names suggest, these method were
based on the Chi et al.’s approach [17], adapting their imple-
mentation into a MapReduce work-flow. The advantages of
using such a linguistic model is having the same rule structure
and Data Base (DB) for all the distributed subprocesses, thus
simplifying the whole design.

In Chi-FRBCS-BigData the initial dataset is divided into
several chunks of information which are then fed to the
different Map functions. Afterwards, the obtained results are
simply aggregated within the Reduce functions. The whole
procedure, which is summarized in Figure 1, consists of the
following stages:

Fig. 1. A flowchart of how the building of the KB is organized in Chi-
FRBCS-BigData

1) Initial: the DB is built computing homogeneous fuzzy
partitions along the domain of each attribute, depending
on the level of granularity selected. Next, the whole
training set is divided into independent data blocks
which are transferred to the processing units together
with the common fuzzy DB.

2) Map: In this stage, each processing unit works inde-
pendently over its available data to build its associated
fuzzy RB (called RBi in Figure 1) following the original
Chi-FRBCS method [17]. Specifically, the procedure
iterates among all examples, deriving all possible sets
of antecedents taking those fuzzy labels that give the
highest membership degree per example. To assign a
single consequent for each antecedent that was previ-
ously obtained, rule weights are computed by means
of the Penalized Certainty Factor (PCF) [18] shown in
Equation (1), where µAj

(xp) is the membership degree
of xp, i.e. p-th example of the training set with the
antecedents of the rule, Cj is the class determined by
rule j, and finally γp is the cost associated to the
class of xp. This cost is equal to 1 for all classes in
Chi-FRBCS-BigData, and |Cmin|/|Cp| in case of Chi-
FRBCS-BigDataCS, with |Cmin| equal to the number of
instances of the minority class. Final class label is set
as the one resulting on the greatest Rule Weight (RW).

RWj = PCFj =

∑
xp∈Cj

µAj (xp) · γp −
∑

xp /∈Cj

µAj (xp) · γp

m∑
p=1

µAj
(xp) · γp

(1)
3) Reduce: In this third phase, all RBi computed by a Map

process are aggregated to obtain the final RB (called
RBR in Figure 1). As rules with the same antecedent
may come from different Maps, we follow the Chi-
FRBCS-BigData-Avg scheme in which the final RW
is computed as the average of those of the rules of the
same consequent. In case of having rules with identical
antecedent and different consequent, the one with the
highest RW is maintained in RBR.

4) Final: results computed in the previous phases are
provided as the output of the computation process. The
generated fuzzy KB is composed by the fuzzy DB built
in the “Initial” phase and the fuzzy RB, RBR, obtained
in the “Reduce” phase. This KB will be the model that
will be used to predict the class for new examples.

IV. AN EVOLUTIONARY FUZZY SYSTEM FOR RULE
SELECTION IN BIG DATA CLASSIFICATION

EFS [13] are models that allow to find the optimal parame-
ters in the building process of an FRBCS or for the a-posteriori
improvement of some of its components. Their application to
Big Data problems is still at an early stage, as noted by the
few works published in this area of research [14], [15]. The
time constrains of EFS approaches are probably one of the
reasons of the lack of contribution on the topic.

As it was noted at the beginning of this contribution, the
scalability in terms of running time is a significant point to
evaluate the success of those algorithms for Big Data appli-
cations. With this premise, we have developed a MapReduce
implementation within the Spark programming framework [4].

In this section, we will describe our EFS proposal based in
MapReduce for carrying out rule selection (Subsection IV-A).
Then, we will introduce some brief comments regarding the
implementation in Spark (Subsection IV-B).

A. Chi-Spark-RS proposal
In this contribution, we propose a methodology for the

rule selection of an already learned FRBCS seeking a double
aim: 1) simplifying the KB allowing a simpler and more
interpretable model; (2) improve the recognition ability of the
classifier by means of the synergy among rules with a good
cooperation.

The EFS process is applied within each Map task, so that
it is locally applied to each RBi. This scheme seeks to
accomplish several objectives:

1) To simplify the whole rule selection process by directly
embedding it into each independent Map process.

2) To improve the convergence of the optimization proce-
dure by means of a reduced search space.

3) To provide a better contextualization of the whole pro-
cess by acting on the data from which rules have been
directly derived.

4) To remove “outlier” rules with a high RW that might
be erroneously maintained in the final RB during the
Reduce step.

In order to apply this tuning, and following the procedure
considered in our previous proposals in this topic [15], [19],
we will consider the use of the CHC algorithm. The compo-
nents needed to design this process are explained below:

1) Coding Scheme: a binary coding is considered, where
each gene represents whether a rule is finally selected
(value 1) or not (value 0) from the RB. Therefore, the
total number of genes is equal to the size of the initial
RB of each Map, i.e. RBi.

2) Chromosome Evaluation: Since we are addressing clas-
sification with imbalanced datasets, the fitness function
must compensate the uneven class distribution. In order
to give the same importance to both the majority and
minority class instances, we will make use of the Area
Under the ROC curve (AUC) metric [20], computed as:

AUC =
1 + TPrate − FPrate

2
(2)

where TPrate is computed as the ratio of correct hits
over the minority classes, and FPrate is the ratio of
false positives.
Furthermore, we must give a degree of significance on
the total number of rules selected, seeking to obtain a
simple and compact RB. Hence, the final fitness function
is computed as a combination of both factors:

Fitness = α ·AUC + (1− α) ·RemovedRules (3)

3) Initial Gene Pool: the initial pool is obtained with the
first individual having all genes with value ‘1’ (the initial
RB), whereas the remaining individuals are generated at
random in {0, 1}.

4) Crossover Operator: We consider the HUX mechanism
in which exactly half of the non-matching genes of the
chromosomes are swapped between them to create two
new offspring.
Additionally, an incest prevention mechanism is applied
prior to the HUX operator. This implies that two parents
will be only crossed if they are different enough. This is
done by computing their Hamming distance, which must
be above a predetermined threshold L, which changes
along the genetic process. The initial threshold value is
initialized as:

L = #Genes/4.0

where #Genes stands for the total length of the
chromosome (as pointed in item (1)). As stated above,
L is decremented by one when there are no new
individuals in the next generation

5) Restarting approach: When the threshold value is lower
than zero, all the chromosomes are regenerated ran-
domly. Furthermore, the best global solution found is
included in the population to increase the convergence
of the algorithm. Finally, value L is also reset.

B. Spark framework

Currently, there are several programming frameworks that
supports MapReduce implementations that allow programs to
cope with Big Data problems [3]. Two of the most well-
known open-source alternatives are Hadoop [16] and Spark
[4]. The advantages of Spark in contrast to Hadoop are clear:
applying an in-memory storage of the data to improve the
latency between the Map and Reduce tasks, thus allowing a
more efficient management of iterative procedures.

To do so, Spark introduces the Resilient Distributed Datasets
(RDDs) as well as using two kind of optimized distributed
operators over these RDDs: transformations and actions. On
the one hand, a transformation can be regarded as an extension
of the standard Map process, as it applies a given function over
each element of the data and outputs an RDD with the results.
On the other hand, an action aggregates all the elements of an
RDD and returns the final result to the main program, just as
the Reduce task performed. Following this scheme, we may
apply an action Reduce over a dataset created from a Map, and
it will return only the result of the Reduce execution, instead
of the mapped dataset, which is larger. This design allows
Spark applications to be executed more efficiently.

We must highlight that, apart from the use of the RDDs
and the Spark operators, there are no significant changes
in the original Chi-FRBCS-BigData procedure in this Spark
implementation. In this way, the standard implementation
(without rule selection) has been noted as Chi-Spark.

The whole Spark procedure that learns each RBi, selects
the optimal number of rules from each Map by means of the
evolutionary search, and aggregates all the rules into a single
RB, is noted as Chi-Spark-CS. We must also stress that the
Scala source code has been made available at GitHub2.

V. EXPERIMENTAL STUDY

This section is devoted to show the goodness of our novel
algorithm Chi-Spark-RS with respect to the standard learning
procedure without rule selection. In addition to the former,
we will analyze the synergy between this approach and those
solutions for addressing imbalanced classification, namely
cost-sensitive learning, RUS and ROS.

To do so, we will first introduce our experimental frame-
work in which the details of the benchmark datasets and the
parameters are given (Subsection V-A). Then, we will show
our experimental results and we will carry out the subsequent
analysis (Subsection V-B).

A. Experimental Framework

For this study, we have selected three Big Data problems
from UCI repository [21]: Covertype, Poker, and KddCup99
datasets. These problems are translated into four binary
datasets by joining pairs of classes or contrasting one class
versus the rest. A summary of the problem features is shown
in Table I, where the number of examples (#Ex.), number of
attributes (#Atts.), selected classes, number of examples per
class, and the Imbalance Ratio (IR) are included. Table is in
descending order according to the number of examples.

TABLE I
SUMMARY OF BIGDATA CLASSIFICATION PROBLEMS

Datasets #Ex. #Atts. Selected classes #Samples per class IR
Poker 0 vs 5 515,751 10 (0; 5) (513,701; 2,050) 250.59
Poker 0 vs 2 562,529 10 (0; 2) (513,701; 48,828) 10.52
Covtype 7 vs all 581,012 54 (7; remainder) (560,445; 20,567) 27.25
Kddcup R2L vs all 4,898,431 41 (R2L; remainder) (4,897,305; 1,126) 437.73

For the experimental analysis, we will take into account the
AUC metric to evaluate the classification performance in the
context of imbalanced datasets. The estimates for this metric
will be obtained by means a 5-fold stratified cross-validation
partitioning scheme.

The configuration parameters for Chi-Spark (the Spark im-
plementation of Chi-FRBCS-BigData) and Chi-Spark-RS (our
novel proposal) are presented in Table II being “Conjunction
operator” the operator used to compute the compatibility
degree of the example with the antecedent of the rule and
the operator used to compute the compatibility degree and the
RW. We must recall that regarding the “Reduce” stage we will
make use of the Chi-FRBCS-BigData-Avg version, as stated in
Section III.

Regarding the infrastructure used to perform the experi-
ments, we have used the research group’s cluster with 16
nodes connected with a 40Gb/s Infiniband. Each node is
equipped with two Intel E5-2620 microprocessors (at 2 GHz,

2https://github.com/aFdezHilario/Chi-Spark-RS

TABLE II
CONFIGURATION PARAMETERS FOR CHI-SPARK AND CHI-SPARK-RS

Number of Labels: 3 fuzzy partitions
Conjunction operator: Product T-norm
Rule Weight: Penalized Certainty Factor [18]
Fuzzy Reasoning Method: Winning Rule
α (for fitness) 0.7 for AUC
Number of evaluations (CHC) 1,000
Population Size (CHC) 50 individuals

15MB cache) and 64GB of main memory running under Linux
CentOS 6.6. The head node of the cluster is equipped with two
Intel E5-2620 microprocessors (at 2 GHz, 15MB cache) and
96GB of main memory. Furthermore, the cluster works with
Hadoop 2.6.0 (Cloudera CDH5.4.2). As total number of Maps
for the data distribution we have selected 128 Maps.

Finally, three different mechanisms to address imbalanced
classification will be applied to evaluate their impact in
synergy with Chi-Spark-RS: Cost-sensitive learning via Chi-
FRBCS-BigDataCS, RUS and ROS. These last algorithms
are available in a Spark package called Imb-sampling-
ROS and RUS3. The datasets obtained by the pre-processing
were generated to achieve a balanced class distribution.

B. Analysis of the results

In this section, we will analyze the behavior of Chi-Spark-
RS under three different perspectives: (1) global performance
(in terms of AUC), interpretability of the RB (in terms of
number of rules), and running time. The objective is to contrast
whether there are significant differences among these metrics
depending on the solution applied to address imbalance.

To do so, we show in Tables III to VI the complete
experimental results. Each table contains the train and test
AUC values, the number of rules, and the time (hh:mm:ss)
for each one of the four datasets selected for this study. All
tables are divided into two parts; the left-hand side corresponds
to the results obtained by the standard fuzzy rule learning
approach, i.e. Chi-Spark, whereas the right-hand side shows
the results for our new proposed Chi-Spark-RS. Finally, we
must point out that each one of the rows corresponds to a
different case study for the solutions applied to cope with
imbalanced classification.

From the results we may extract the following conclusions:
• Best AUC results are obtained using RUS and ROS

prior to the learning stage. This justifies the necessity of
balancing the class distribution so that general classifiers
are able to correctly identify both classes of the problem.

• We must stress the good behavior shown by RUS in both
Chi-Spark and Chi-Spark-RS. As the number of examples
is significantly reduced from the training set, especially
in the highly imbalanced problems, both the number of
generated rules and the training time are also decreased
in contrast to the remaining case studies.

• Finally, we must stress the reduction rate in terms of
number of rules achieved by Chi-Spark-RS. In all cases

3https://spark-packages.org/package/saradelrio/Imb-sampling-ROS and
RUS

it gets around a 20% of less rules while maintaining or
improving the AUC metric. As stated in the previous
point, the most interesting behavior is shown in synergy
with RUS preprocessing, where a very low number of
rules (in proportion to the original number of examples)
is enough to represent the problem accurately.

VI. CONCLUDING REMARKS

In this work we have carried out a new Evolutionary Fuzzy
Rule Selection proposal for classification with Big Data prob-
lems. The idea behind this research was to enhance the rule
generation mechanism of a MapReduce learning algorithm, by
obtaining an optimal number of rules within each Map process.
To do so, we have implemented the whole procedure within
Spark, aiming for an efficient solution.

In particular, we have analyzed and contrasted the behavior
of this approach in the context of imbalanced classification.
To do so, four different case studies have been set: using
the original dataset, applying a cost-sensitive learning scheme,
rebalancing the training set via RUS, and rebalancing the train-
ing set via ROS. In the two first cases, the global performance
has maintained similar to the original Chi-Spark approach,
but the RB reduction must be emphasized. When applying
sampling to the dataset, we have observed an improvement of
the results with respect to the previous case. A very interesting
behavior must be highlighted in the case of RUS, where the
size of the problems have been significantly reduced but still
the fuzzy learning approach has obtained a good performance
for both the majority and minority classes. This behavior must
be related to the coverage of fuzzy labels, where just few
“prototype” examples are needed to derive rules that provide
a good representation of the problem space.

Results have been very promising, but there is still much
work to be carried out for future research. In particular, two
extensions can be directly considered. First, to avoid the
inclusion in the final RB of those rules that have been marked
to be removed in the majority of the Map processes. Second,
to apply a global Evolutionary Rule Selection after the whole
generation of the RB.

ACKNOWLEDGMENT

This work have been partially supported by the Spanish
Ministry of Science and Technology under projects TIN2014-
57251-P and TIN2015-68454-R.

REFERENCES

[1] A. Labrinidis and H. V. Jagadish, “Challenges and opportunities with
big data,” VLDB, vol. 5, no. 12, pp. 2032–2033, 2012.

[2] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, “Data mining with big data,”
IEEE Trans. Knowl. Data Eng., vol. 26, no. 1, pp. 97–107, 2014.

[3] A. Fernández, S. Rı́o, V. López, A. Bawakid, M. del Jesus, J. Benı́tez,
and F. Herrera, “Big data with cloud computing: An insight on the com-
puting environment, mapreduce and programming framework,” WIREs
Data Mining and Knowl. Discovery, vol. 4, no. 5, pp. 380–409, 2014.

[4] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in 9th
USENIX Conference on Networked Systems Design and Implementation,
ser. NSDI’12, 2012, pp. 1–14.

TABLE III
EXPERIMENTAL RESULTS FOR POKER 0 VS 5 DATASET. BEST RESULT PER METRIC IS STRESS IN BOLDFACE.

Method AUC-Tr AUC-Tst #Rules Time Method AUC-Tr AUC-Tst #Rules Time

Chi-Spark .7602 .7555 49013 00:00:08 Chi-Spark-RS .7677 .7642 42498 00:01:17
Chi-Spark-CS .7693 .7644 49013 00:00:10 Chi-Spark-CS-RS .7782 .7708 42515 00:01:25
RUS+Chi-Spark .9834 .8460 2013 00:00:03 RUS+Chi-Spark-RS .7950 .7120 728 00:00:03
ROS+Chi-Spark .7413 .7412 49013 00:00:11 ROS+Chi-Spark-RS .9461 .9371 42574 00:05:15

TABLE IV
EXPERIMENTAL RESULTS FOR POKER 0 VS 2 DATASET. BEST RESULT PER METRIC IS STRESS IN BOLDFACE.

Method AUC-Tr AUC-Tst #Rules Time Method AUC-Tr AUC-Tst #Rules Time

Chi-Spark .6714 .6295 51087 00:00:09 Chi-Spark-RS .6567 .6174 44463 00:01:38
Chi-Spark-CS .6719 .6298 51087 00:00:09 Chi-Spark-CS-RS .6597 .6201 44532 00:02:01
RUS+Chi-Spark .7475 .6483 30896 00:00:05 RUS+Chi-Spark-RS .7125 .6349 20259 00:00:23
ROS+Chi-Spark .5779 .5608 51087 00:00:10 ROS+Chi-Spark-RS .7036 .6406 44404 00:05:03

TABLE V
EXPERIMENTAL RESULTS FOR COVTYPE 7 VS ALL DATASET. BEST RESULT PER METRIC IS STRESS IN BOLDFACE.

Method AUC-Tr AUC-Tst #Rules Time Method AUC-Tr AUC-Tst #Rules Time

Chi-Spark .8563 .8484 8126 00:00:07 Chi-Spark-RS .8522 .8466 7296 00:02:28
Chi-Spark-CS .8574 .8500 8126 00:00:08 Chi-Spark-CS-RS .8569 .8499 7271 00:02:41
RUS+Chi-Spark .9383 .9277 4037 00:00:05 RUS+Chi-Spark-RS .9337 .9253 2951 00:00:13
ROS+Chi-Spark .7085 .7058 8126 00:00:08 ROS+Chi-Spark-RS .9148 .9068 7314 00:05:15

TABLE VI
EXPERIMENTAL RESULTS FOR KDDCUP R2L VS ALL DATASET. BEST RESULT PER METRIC IS STRESS IN BOLDFACE.

Method AUC-Tr AUC-Tst #Rules Time Method AUC-Tr AUC-Tst #Rules Time

Chi-Spark .6112 .6047 1152 00:00:05 Chi-Spark-RS .5978 .5946 903 00:19:33
Chi-Spark-CS .6064 .6047 1152 00:00:07 Chi-Spark-CS-RS .6203 .6179 867 00:20:11
RUS+Chi-Spark .9325 .9261 131 00:00:01 RUS+Chi-Spark-RS .9845 .9761 40 00:00:08
ROS+Chi-Spark .5347 .5329 1152 00:01:21 ROS+Chi-Spark-RS .9679 .9588 885 01:00:11

[5] V. Lopez, A. Fernandez, S. Garcia, V. Palade, and F. Herrera, “An insight
into classification with imbalanced data: Empirical results and current
trends on using data intrinsic characteristics,” Information Sciences, vol.
250, no. 20, pp. 113–141, 2013.

[6] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and
G. Bing, “Learning from class-imbalanced data: Review of methods and
applications,” Expert Syst. with Applicat., vol. 73, pp. 220 – 239, 2017.

[7] H. Ishibuchi, T. Nakashima, and M. Nii, Classification and modeling
with linguistic information granules: Advanced approaches to linguistic
data mining. Berlin, Germany: Springer-Verlag, 2004.

[8] A. Fernandez, C. Carmona, M. del Jesus, and F. Herrera, “A view
on fuzzy systems for big data: Progress and opportunities,” Int. J. of
Computational Intell. Syst., vol. 9, no. 1, pp. 69–80, 2016.

[9] H. Wang, Z. Xu, and W. Pedrycz, “An overview on the roles of fuzzy set
techniques in big data processing: Trends, challenges and opportunities,”
Knowledge-Based Syst., vol. 118, pp. 15–30, 2017.

[10] S. Rı́o, V. López, J. Benı́tez, and F. Herrera, “A mapreduce approach
to address big data classification problems based on the fusion of lin-
guistic fuzzy rules,” International Journal of Computational Intelligence
Systems, vol. 8, no. 3, pp. 422–437, 2015.

[11] V. López, S. del Rı́o, J. M. Benı́tez, and F. Herrera, “Cost-sensitive
linguistic fuzzy rule based classification systems under the mapreduce
framework for imbalanced big data,” Fuzzy Sets and Systems, vol. 258,
pp. 5–38, 2015.

[12] A. Segatori, F. Marcelloni, and W. Pedrycz, “On distributed fuzzy
decision trees for big data,” IEEE Trans. Fuzzy Syst., vol. PP, no. 99,
pp. 1–1, 2017.

[13] A. Fernandez, V. Lopez, M. J. del Jesus, and F. Herrera, “Revisiting

evolutionary fuzzy systems: Taxonomy, applications, new trends and
challenges,” Knowlegde Based Systems, vol. 80, pp. 109–121, 2015.

[14] A. Ferranti, F. Marcelloni, and A. Segatori, “A multi-objective evolution-
ary fuzzy system for big data,” in 2016 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), 2016, pp. 1562–1569.

[15] A. Fernndez, S. del Ro, and F. Herrera, “A first approach in evolutionary
fuzzy systems based on the lateral tuning of the linguistic labels for big
data classification,” in 2016 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), 2016, pp. 1437–1444.

[16] C. Lam, Hadoop in action, 1st ed. Manning, 2011.
[17] Z. Chi, H. Yan, and T. Pham, Fuzzy algorithms with applications to

image processing and pattern recognition. World Scientific, 1996.
[18] H. Ishibuchi and T. Yamamoto, “Rule weight specification in fuzzy rule-

based classification systems,” IEEE Trans. Fuzzy Syst., vol. 13, pp. 428–
435, 2005.

[19] A. Fernández, M. J. del Jesus, and F. Herrera, “On the 2–tuples based
genetic tuning performance for fuzzy rule based classification systems
in imbalanced data–sets,” Inform. Sci., vol. 180, no. 8, pp. 1268–1291,
2010.

[20] J. Huang and C. X. Ling, “Using AUC and accuracy in evaluating
learning algorithms,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 3,
pp. 299–310, 2005.

[21] M. Lichman, “UCI machine learning repository; university of california,
irvine, school of information and computer sciences. http://archive.ics.
uci.edu/ml,” 2013. [Online]. Available: http://archive.ics.uci.edu/ml

