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A B S T R A C T

In recent years, the research community has witnessed an explosion of literature dealing with the mimicking
of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computa-
tional tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the
unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transporta-
tion, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding
this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their
eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date.
The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the
most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the
general trajectory followed in recent years by the community working in this field, thereby highlighting the need
for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this
family of optimization techniques.

1. Introduction

Over millions of years, Nature has evolved to give rise to intelligent
behavioral characteristics and biological phenomena, where adaptabil-
ity, self-learning, robustness, and efficiency enable biological agents
(such as insects and birds) to undertake complex tasks. While cases
exemplifying these capabilities are truly multi-fold, the most illustra-
tive ones revolve around the social behavior of animals such as ant
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colonies, beehives and bird flocks, where concepts such as stigmergy
and the collective swarming movement of organisms often lead to the
so-called Swarm Intelligence (SI), where improved exploration mecha-
nisms over complex search spaces can be achieved by agents obeying
local rules without any central control. The overall functionalities of
the swarm are much richer than the simple sum of individual actions.
Similarly, other renowned examples arise from the genetic inheritance
process, the immune system of the human body or the neural activity
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of the brain. We refer to Ref. [1] for a comprehensive material summa-
rizing these inspirational sources found in Nature.

Inspired by different behaviors observed in biological systems,
many researchers in the research community investigating on com-
putational paradigms have emulated intelligent bio-inspired processes
in the form of computational algorithms, in an attempt to mimic the
inherent advantages of such biological systems to address complex
modeling, simulation, and optimization problems. In this regard, spe-
cial attention has been paid to optimization problems, whose com-
plexity has unleashed a rich substratum where to grow many bio-
inspired population-based heuristic approaches, each differently bal-
ancing between computational efficiency and optimality of solutions.
While the first contributions in this area are largely based on observa-
tion and emulation of Darwinian evolutionary principles, nowadays the
number of bio-inspired solvers in the literature has increased dramat-
ically, with very diverse inspirational rationale underneath their algo-
rithmic design. This spotted flourishing of novel bio-inspiration opti-
mization methods becomes even more intense when shifting the focus
on other aspects related to optimization, such as multi-objective crite-
ria, evolving (dynamic) optimization problems or distributed comput-
ing schemes, to mention a few.

However, quantity and diversity do not necessarily reflect scien-
tific value when it comes to science. The development of the field has
lately undergone a gold rush for bio-inspired streamlines that stimulate
new algorithmic strands, around which some controversy has sprung
regarding their relevance and novelty [2]. Debates around this topic
are counterproductive, for which they waste efforts towards research
directions with scarce – or even null – added scientific value. The
same may occur in other research subareas as the ones exemplified
above, where most algorithmic contributions build upon empirical per-
formance observations rather than upon a deep, thoughtful and rig-
orous analysis of their design and internal operation. Futile debates
should set aside to allow the entire community to start over with a
clean common ground on the key research directions to be pursued in
the future. We must ally to focus our efforts on important unresolved
questions that can potentially produce greater insights into bio-inspired
optimization techniques, ultimately leading to valuable advances and
improved methods. Without a consensus, research niches of acknowl-
edged relevance in the field will remain largely unexplored and unfairly
dominated by controversial discussions, subtle and incremental algo-
rithmic proposals, and a worrying lack of fresh breezes and fertile
prospects.

This work responds to this need for a common meeting point by
suggesting the audience to pause and reflect on which research direc-
tions should be pursued in the future in regards to bio-inspired opti-
mization and related areas. For this purpose we pay special attention
to numerical optimization, which was underneath the advent of the
first bio-inspired solvers that were later adapted to combinatorial opti-
mization. In this manuscript we provide an informed insight of the
status of this field from both descriptive (where we stand) and pre-
scriptive (what’s next) points of view. This manuscript suggests and
highlights several key research challenges that should captivate new-
comers and experienced researchers for years to come, with scientific
soundness at the core of their raison d’être. We hope that our envi-
sioned future for bio-inspired computation acts as a suggestive guiding
light for the community, bringing together different views that have
remained so far quite different from each other to date, and poten-
tially unifying them into a comprehensive multi-disciplinary view of the
field.

The remainder of the paper is structured as follows: first, Section
2 provides a brief albeit informative overview of the history of bio-
inspired computation. Section 3 and subsections therein undertake a
comprehensive analysis of several areas of the field, stressing on their
current status, trends, and open challenges. Section 4 elaborates on
the general issues and research niches of bio-inspired computation, and
finally Section 5 concludes this paper.

2. Recent history of bio-inspired computation

Bio-inspired computation has emerged as one of the most studied
branches of Artificial Intelligence during the last decades. Hundreds of
novel approaches have been reported along the years, showcasing the
adoptability of different bio-inspired behaviors and characteristics to
yield a near-optimal performance over a wide range of complex aca-
demic and real-world problems. This growing attention has led to a
continuous increase in the number of publications related to the field,
mainly focusing on the analysis, adaptation and/or improvement of dif-
ferent heuristic solvers.

Over the past, a diversity of optimization problems has been tack-
led using different bio-inspired techniques. According to the practical
concerns of the time, the first ones addressed with this algorithmic port-
folio were continuous and combinatorial optimization problems, which
hinged on seminal formulations such as the Traveling Salesman Prob-
lem (TSP) or the Knapsack Problem (KP). In the late 60s and 70s, Fogel,
Rechenberg and Schwefel reported their first pioneering studies related
to Evolutionary Programming (EP, designed to optimize the behavioral
linkage between solutions to a problem and their offspring) and Evolu-
tion Strategies (ES, conceived for numerical optimization since its very
inception), laying the first compounding bricks of an incipient com-
munity that revolved around these concepts [3–5]. Another ground-
breaking contribution was made by Holland with the publication of his
seminal book in 1975 [1] on Genetic Algorithms (GA). This optimiza-
tion method impacted deeply on the community at that time, unleash-
ing a flurry of activity and a vast area of research that gave birth to what
would be subsequently coined as bio-inspired computation. These three
streams developed in isolation until the early 90s, when they came to
be the cornerstone of a unified algorithmic branch denoted as Evolu-
tionary Computation (EC, [6]). A special mention should be also given
to Differential Evolution (DE) by Storn and Price [7], which embodied
another breakthrough achievement within the EC community. Several
other milestones in the EC realm were reported to the community in
years thereafter, with emphasis on improved versions of nominal EC
solvers (e.g. CMA-ES [8], IPOP-CMA-ES [9] or the more recent SHADE
approach [10]).

Simultaneously to the forge of the EC field, the availability of more
computational resources made it possible to cope with more com-
plex and diverse optimization problems, especially those for which an
analytical formulation cannot be stated mathematically (as occurs in
e.g. simulation-based or black-box optimization). New problem flavors
such as multi-modal and multi-objective optimization paved their way
within a research community eager to delve into the benefits of bio-
inspired computation. As for multi-modal optimization (i.e., problems
where most of its multiple optimal solutions must be found), several
studies have evinced that bio-inspired computation approaches can per-
form extremely well in practice [11–13], as opposed to classical opti-
mization methods. In regards to problems comprising several conflict-
ing objectives, the rise and development of this subarea has gone side by
side with multi-objective optimization methods relying on bio-inspired
processes (e.g. NSGA-II [14], MOEA/D [15], SMPSO [16] and others
proposed along the years [17,18]). Recently, this stream has evolved to
what is now referred to as many-objective optimization, an emerging topic
where bio-inspired computation still prevails [19]. Another class of
optimization problems gaining momentum today is Large-Scale Global
Optimization (LSGO), which aims at dealing efficiently with the ever-
growing complexity of real-world problems in any of its design dimen-
sions (number of objectives, variables and/or constraints). LSGO tech-
niques are designed to capitalize on the higher availability of compu-
tational resources and the emergence of new computing paradigms for
massively parallel processing, which unleashes a very suitable scenario
for the design and development of parallel or multi-population bio-
inspired approaches. Some comprehensive compendiums on this noted
suitability can be found in Ref. [20]. In addition, another class of opti-
mization problems with the assumption that fitness function(s) and con-
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Fig. 1. Time line of the history of a representative excerpt of Nature-inspired optimization techniques (both bio-inspired and physics-based methods), where each
technique is represented by its acronym inside a circle. Techniques that have posed a renowned milestone in the history of bio-inspired computation are highlighted
in bold font, whereas modern nature-inspired algorithms, depicted in light gray, are included just for illustrative purposes. The figure also includes a nested plot
depicting the number of published contributions related to EC and SI in the last two decades. Data retrieved from the Scopus® database (November 1st, 2018). The
steady behavior of EC over recent years clashes with the rapid bibliographic growth of SI.

straints can be unstable and varying over the period in which the pro-
duced solution is applied. As such, dynamic optimization techniques are
designed to deal with problems that evolve along time, a more realistic
setup when the problem is defined over non-stationary scenarios [21].

In parallel to the maturity reached by EC, bio-inspired solvers
evolved to algorithms with a higher level of sophistication, embracing
the emulation of other processes and behaviors observed in Nature. The
most acknowledged milestone in this regard is the birth of what is cur-
rently known as Swarm Intelligence (SI, [22]), a branch of bio-inspired
computation based on the emergence of collective intelligence from
large populations of agents with simple behavioral patterns for com-
munication and interaction. This is essentially the fundamental princi-
ple behind Ant Colony Optimization (ACO, [23]) and Particle Swarm
Optimization (PSO, [24]), arguably the first bio-inspired methods that
fell within the SI umbrella. A myriad of bio-inspired SI methods have
been proposed ever since, with inspirational motifs found in phenom-
ena observed in Nature. Two branches tie together within this category.
The first one relates to biological processes, such as the geographi-
cal distribution of biological organisms (Biogeography-Based Optimiza-
tion [25]) or the chemotactic movement of bacteria (Bacterial Foraging
[26]). The second inspirational motivation is the behavioral patterns of
animals, such as bees (Artificial Bee Colony [27]) or fireflies (Firefly
Algorithm [28]). The current list of bio-inspired SI is huge and grows
almost on a daily basis. Exhaustive compendiums can be found in Refs.
[29,30].

Social and political behaviors have also served as an inspiration
for the proposal of many heuristic solvers, for instance, the adop-

tion of political practices such as imperialism (Imperialist Competitive
Algorithm [31]) or anarchy (Anarchic Society Optimization [32]). On
the other hand, social attitudes have also inspired several methods,
such as Society and Civilization [33] or hierarchies in which human
organizations and structures are often arranged [34]. Likewise, phys-
ical processes have also laid the foundation for several optimization
approaches, such as the dynamics of water (Water Cycle Algorithm [35]
or Hydrological Cycle Algorithm [36]), gravitational kinematics (Gravi-
tational Search Algorithm, [37]) or optics systems [38]. A recent survey
provides a thorough overview of this literature strand which, jointly
with biologically inspired solvers, gave birth to the immense field
of nature-inspired optimization [39]. We note, however, that solvers
inspired by physical processes or social behaviors have been remark-
ably outnumbered by those with a biological simile at their core. This
being said, even though most conclusions, drawn in this manuscript also
hold for optimization algorithms inspired in Physics or social behavioral
patterns, we will concentrate our discussion on bio-inspired optimiza-
tion techniques due to their higher prominence and relative maturity in
current research.

Apart from bio-inspired EC and SI methods, which are monolithic
approaches with their own intrinsic characteristics, an uprising trend
has lately protruded over the literature mainstream: the hybridization
of different algorithms. Since the dawn of bio-inspired computation,
many researchers have focused their efforts on combining different
methods and functionalities into a single solver in order to overcome
the disadvantages and/or improve the performance shown by off-the-
shelf methods. In this regard, Memetic Algorithms (MA) spearhead this
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design principle by exploiting the synergy between a bio-inspired global
optimization approach with local search procedures tightly coupled to
the problem at hand [40]. The intense activity around MA has made
them constantly grow to furnish more complex solvers characterized by
extremely sophisticated cooperative mechanisms. In addition, Coopera-
tive Coevolution (CC, [41]) has also played a historical role in the bio-
inspired realm for its notable performance in highly complex problems,
mainly by virtue of its capability to divide them into subcomponents
(species) that are solved independently from each other.

For the sake of a better understanding of its development so far,
Fig. 1 depicts a historical timeline of bio-inspired computation to date,
spanning from the seminal contribution of EP and ES to the biblio-
graphic flood of metaphor-based SI methods registered in the last cou-
ple of decades. When it comes to scientific production, EC captained
the prominence of literature in the dawn of this field, with GA and DE
at its foremost. A quantitative estimation supporting this statement can
be made by inspecting the reputed Scopus® scientific database, which
indicates that more than 13,000 works have been published in this topic
since the beginning of the present century, blossoming with particular
strength during the last decade (approximately 1000 papers published
on average every year). Despite slightly less prolific on an aggregate
basis (more than 12,000 works since year 2000), SI methods have kept
on a par with their EC counterparts. However, SI has lately become the
highest growing field of bio-inspired computation, thriving at a notable
pace from barely 400 contributions in 2007 to more than 1200 in 2017.
Indeed, the interest garnered by this branch has been in crescendo at
such a rate that the number of published works related to SI when com-
pared to that of EC becomes greater every year since 2012. The nested
plot in Fig. 1 illustrates the yearly scientific production in which the
above facts have been noted. Despite enlightening with respect to the
activity in the field we note, however, that these bibliographic produc-
tivity numbers should be assessed with forewarning caution, due to the
bias that the aforementioned excess of metaphor-based works may have
introduced in the reported statistics.

This section may provide the reader with a general overview
of bio-inspired computation, but the literature focused on this field
is immense, with thorough bibliographic compendiums already con-

tributed in the form of exhaustive surveys [42–45]. It is our intention
not to review once again the existing work on the topic, but rather to
identify and discuss upcoming challenges and potential research direc-
tions in the most promising hot topics of the field. We now proceed
with this critical analysis.

3. Bio-inspired computation: where we stand and what’s next

Bio-inspired computation is a broad field composed by multiple
interconnected research areas. A thorough comprehensive review of the
state of the art of all such areas would be counterproductive in our
attempt at prioritizing research efforts in a global scale. For this reason,
in this section, we stress on a reduced subset of research areas which,
as shown in Fig. 2, have been particularly trendy in the last couple
of years. Our analysis, schematically summarized in Fig. 3, emphasizes
on the identification of research niches that still deserve further atten-
tion by the community, as well as on possible algorithmic synergies
between different areas or between bio-inspired computation and other
knowledge disciplines that could eventually disclose uncharted routes
for further investigation.

3.1. Theoretical foundations

Even though bio-inspired computation has so far enjoyed great pop-
ularity, there still remains a wide gap to be bridged between the empir-
ical performance assessment of bio-inspired optimization techniques
and the rigorous mathematical understanding of some of their most
important algorithmic properties such as the rate of convergence, com-
putational complexity or statistical stability, among others. Before the
modern computer era, only well-characterized problems could be tack-
led using mathematical programming methods and neat mathematical
proofs. Meta-heuristics were developed thereafter to deal with non-
rigorously defined optimization problems – even not formally defined
at all, provided that a measure to compare any two solutions is avail-
able – for which traditional maths do not apply. With this prior in
mind, the study of theoretical properties of bio-inspired heuristics can
be thought to be, to a point, misaligned with the fundamental goal with

Fig. 2. Share of research contributions published within every area of bio-inspired computation addressed in Section 3. Data retrieved from the
Scopus® database (November 1st, 2018). Publication counts have been produced by submitting to Scopus® the query FIELD AND AREA, e.g.
SWARM INTELLIGENCE AND MULTIMODAL. Some variants of the terms have been also used for the sake of a maximum coverage per topic, such as
SWARM INTELLIGENCE AND (THEORY OR THEORETICAL).
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Fig. 3. Graph with first-level nodes representing the areas within bio-inspired optimization considered in our study, with some of their identified research niches
stemming from each of such nodes.

which they were originally conceived [46]. Nevertheless, such analy-
ses can yield valuable information on the fundamental reasons why a
search algorithm performs empirically better than others for a certain
class of problems. Indeed, the lack of a universally outperforming meta-
heuristic for all kind of optimization problems yields from the well-
known No Free Lunch Theorem for optimization, originally introduced
in Ref. [47], further elaborated in Refs. [48–51], and recently revis-
ited in Ref. [52]. This Theorem has been of central importance in the
field of optimization meta-heuristics, as it states that no optimization
algorithm can perform better than any other under any metric over all
possible problems. This proven fact stimulates the need for developing
theoretical studies on the properties of meta-heuristics, for which many
authors have lately elaborated on different mathematical frameworks
that we here overview, with the final aim at outlining future paths that
should be followed in this area.

To begin with, the understanding of the working mechanisms of
bio-inspired techniques has traditionally progressed by addressing fun-
damental questions on their convergence properties and computational
complexity with different mathematical frameworks and tools [53,54].
One of the most studied topics is related to the convergence of these
search algorithms, including the identification of the conditions under
which such a convergence can be guaranteed. Following the insights
drawn for Simulated Annealing and other heuristics by using Markov
models, fixed-point theory, variance analysis, and dynamical systems,

much attention has lately been paid to the extrapolation of these tools
to model the agent-based behavior of population-based heuristics [45].
For example, the theory of dynamical systems has unveiled very inter-
esting properties of PSO, such as the range of parameter values under
which this algorithm can be proven to converge [55]. Logistic maps,
a polynomial recurrence relation capable of modeling the non-linear
demographic dynamics of a population of organisms, has been used for
similar purposes [56]. An alternative approach to convergence analy-
sis resides on the adoption of Markov Chain Monte Carlo methods to
model the interactions between multiple search agents in bio-inspired
solvers [57]. However, the use of this mathematical framework with
more recent heuristics still remains largely unexplored for many other
algorithms.

Another theoretical aspect that has undergone intense research in
the last few years is the relationship between the solution space of the
problem to be solved and the design of the bio-inspired optimization
technique. In this regard, much attention has been devoted to the theo-
retical analysis of the so-called landscape of the problem, which is com-
posed not only by the fitness function that assigns a metric value to
a given candidate solution, but also by a neighborhood operator that
relates different encoded solutions and the solution encoding strategy
itself [58]. Fitness landscape analysis finds its motivation in the need
for a better understanding of how a search algorithm can perform on a
family of problem instances, rather than on a single problem instance.
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To some extent, preliminary studies have shed light on commonalities
within a given problem family that eventually lead to theoretically but-
tressed design directives for the search algorithm. For instance, the
landscapes of many combinatorial optimization problems such as the
symmetric TSP and the graph 𝛼-coloring problem are elementary on
their own or can be decomposed into a number of elementary land-
scapes. Theoretical properties unveiled by landscape analysis regarding
the suitability of neighborhood operators are favorable to the inclusion
of local search methods within the bio-inspired solvers. An example of
this design strategy is the work in Ref. [59], where appropriate bio-
inspired meta-heuristics were selected for the protein structure predic-
tion problem based on fitness landscape analysis with random walks.
However, such approaches are often problem-specific and cannot be
generalized to solve other problems.

Other interesting properties that can be inferred from landscape
analysis range from the runtime performance estimation to the evolv-
ability of a population of individuals induced by the landscape, the
neutrality of the landscape, the discovery of optimal parametric set-
tings for heuristic operators or the quantification of certain topologi-
cal properties of the landscape of interest for the application of bio-
inspired heuristics, such as the presence of attraction basins, barri-
ers, or multi-modality or ruggedness (for which the concept of auto-
correlation becomes essential) [60]. Reported attempts at establishing
a formal methodology to decompose a problem in a series of elementary
landscapes [61] are promising paths that should be continued further
in the near future, for the community to argue their new bio-inspired
design choices. This is the reason why landscape analysis is propelling
a vibrant research activity in the last year [62,63], with recent insights
being reported such as the need for a close match between the coordi-
nate system used by the heuristic and the fitness landscape [64]. Unfor-
tunately, such approaches can be largely problem-specific. This area is
still at a very early stage of maturity to be embraced systematically by
the community.

The study of the search efficiency of bio-inspired heuristics has also
attracted great attention in recent times, especially in what regards to
the balance between their diversification (exploration) and intensifica-
tion (exploitation) capabilities [65,66]. The former refers to the genera-
tion of diverse candidate solutions within the search process leading to
wide coverage of the solution space on a global scale, whereas the latter
stands for the capacity of the solver to focus the search process in local
regions of the solution space. In the wider context of randomized search
heuristics (within which bio-inspired solvers can be thought to be a sub-
set), many theoretical tools have been proposed to quantify numerically
the aforementioned capabilities, such as the measurement of different
metrics of diversity over the population of evolved solutions, that might
be an indicator of the level of diversification of the algorithm along
iterations. Interestingly, diversity has been identified as a driver for the
success of heuristic solvers, to the point of replacing the fitness of the
problem itself as the criteria to control the evolution of candidate solu-
tions under what has been coined as novelty search [67]. However, it is
also known that some loss of diversity is required for some heuristics to
converge properly [68,69]. This suggests that more theoretical studies
are needed in regards to the role of diversity and the balance of local
search and global search required to undertake a certain problem effi-
ciently. To shed light on these crucial aspects, we postulate that further
developments around the study of landscapes should gradually consider
behavioral aspects featured by specific bio-inspired algorithms, yield-
ing a theoretical field that has been lately known as dynamic fitness
landscape analysis [62]. Another valuable research direction for this
purpose is the assessment of structural bias in population-based heuris-
tics, namely, the limitation of certain heuristics to focus on some part
of the solution space [70]. Due to their internal features, such algo-
rithms may sample solutions more often either close to the origin, or
close to the boundary, or close to any other specific part of the search
space. Structural bias can degrade severely the performance of heuris-
tic solvers, as has been already found for some important bio-inspired

algorithms [71]. Similar studies alike should also be carried out with
modern heuristics so as to clear up their behavior when sampling the
solution space.

Some words of reflection should be posed around the fundamen-
tal comprehension of bio-inspired optimization approaches. A blos-
soming succession of innovative bio-inspired optimization methods has
emerged during the last decade, particularly in metaphor-based SI.
However, despite their inherent utility to discern the novelty of such
methods with respect to the state of the art, theoretical insights on these
methods have been reported at a significantly lower pace than their
plain experimental performance assessment. This shortage of mathe-
matical background is jeopardizing the discovery of new research direc-
tions in bio-inspired computation, reducing it to a desperate, senseless
race for bio-inspired exoticism and creativeness. Efficient problem solv-
ing is by no doubt the ultimate goal of bio-inspired computation, goal
for which Nature provides countless mechanisms for learning and self-
adaptation in complex circumstances. However, the emulation of such
mechanisms in the form of bio-inspired solvers should be grounded
on a solid design rationale, either by showing theoretical findings that
motivate design choices or by proving that the designed heuristic has
improved theoretical properties in terms of convergence speed, fitness
stability and other characteristics alike. For this to occur, more contri-
butions combining empirical assessment and theoretical developments
are needed in years to come so as to steer away from the ‘look, it’s
working’ publishing frenzy witnessed in recent literature.

Finally, we believe that the theoretical and mathematical analy-
ses of bio-inspired algorithms can be carried out from different per-
spectives so as to gain insight from different angles [45]. Interesting
algorithmic properties can be studied using Markov chain theory, self-
organized systems, filter theory, discrete and continuous dynamical sys-
tems, Bayesian statistics, computational complexity analysis and other
frameworks [57]. Ultimately, truly in-depth understanding and insights
will be gained by leveraging expertise, theories, and frameworks from
mathematics, computer science, statistics, machine learning, control
theory, complex systems, and other disciplines.

3.2. Dynamic and stochastic optimization

Most optimization problems historically addressed in the related lit-
erature built upon static fitness functions and constraint sets that do not
vary along time. Furthermore, problems may rely on parameters whose
values are assumed to be fixed and known a priori. However, in certain
application scenarios, the dynamic characteristics of the environment
where the problem is formulated do not meet these assumptions: the fit-
ness function(s) and/or constraints are often subjected to non-stationary
phenomena that make them prone to changes over time. Classical exam-
ples include the arrival of new tasks and/or machinery failures in pro-
duction scheduling problems, or road accidents in traffic routing prob-
lems. These phenomena yield a stringent need for dealing with the obso-
lescence of the formulated problem in the heuristic search of the bio-
inspired solver, as well as with the eventual uncertainty held on param-
eters participating in the problem definition. This dynamic context for
optimization problems reflects realistically the intrinsic characteristics
of avant-garde application domains such as Social Networks, Smart
Cities, Industry 4.0 or Intelligent Transportation Systems, among many
others. As such, dynamic optimization collectively refers to all those
techniques tailored to efficiently undertake problems whose objectives
and/or constraints may change along time. Likewise, stochastic opti-
mization studies the development of solvers capable of dealing with
uncertainty within the problem definition (involving e.g. random objec-
tive functions or random constraints). Such research areas are closely
linked to one another, and both account for more realistic problem for-
mulations in real setups.

To begin with, dynamic problem formulations can be found in opti-
mization scenarios where the fitness landscape used by the solver is a
function of time, thereby unchaining the need for reacting to eventual
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changes in the landscape and hence, provide new optimal solutions at
any time instant. This area has a long history in the literature, with
surveys dating back as soon as the late past century [72], and stud-
ies contributed thereafter on different theoretical aspects, such as the
behavior of evolutionary operators when dealing with dynamic prob-
lem instances [73,74]. In the last few years, dynamic optimization has
ignited a great research activity, resulting in special issues, workshops
and competitions [75,76] in frontline conferences and journals. In this
regard, the presence of EC methods has been especially notable, among
which two main algorithmic design mainstreams can be identified. In
all of them, population diversity is renowned to be a design factor of
pivotal importance, in a similar fashion to the well-known stability-
plasticity dilemma in learning over non-stationary data streams:

• Active approaches, by which the change in the problem formulation
is explicitly detected. The solver reacts upon a detected change by
altering its standard search procedure (e.g. by resetting part of the
population or increasing the mutation rate). Here, diversity is intro-
duced after the change occurs, which makes this design approach
closely dependent on the performance of the technique used to
detect the change. This is the reason why many authors have lately
invested efforts in enhancing the performance of change detectors
when combined with bio-inspired solvers, either by evaluating peri-
odically candidate solutions or by identifying whether key indica-
tors of the solver’s performance vary along time. In either case, both
elements from EC and SI have been explored lately, with a domi-
nance of the latter noted in the last couple of years [77]. Notable
milestones in this field include the design of full or partial ran-
dom restart strategies [78,79], the so-called hyper-mutation oper-
ator [80], which imprints an increase of the mutation rate once a
change has been detected; or the migration of individuals among
subpopulations in multi-population schemes for dynamic optimiza-
tion, a strategy to actively diversify the pool of candidate solutions
handled by the solver [81,82]. In this literature strand challenges
reside in controlling the amount of diversity to be induced after the
change (which should be coupled to the estimated characteristics of
the detected change in terms of severity and speed), as well as in
the development of new methods for change detection, specially for
slowly-evolving and/or subtle problem changes.

• Passive approaches, in which diversity in the population/swarm is
steadily maintained during the search process over time. In this case,
the idea is to sacrifice search performance during those time inter-
vals where the problem formulation can be deemed static for a bet-
ter reaction of the algorithm when a change in the problem occurs.
This is accomplished by injecting diversity in the population/swarm
of the bio-inspired solver anyhow, to prevent it from converging
to optima that might become eventually obsolete. This insertion of
diversity has been so far done in many ways, including the gen-
eration of random candidate solutions, tailored crossover operators
that favor the generation of offspring strongly differing from their
parents, explicit convergence avoidance or the use of multiple sub-
populations/swarms that are enforced to track changes of the prob-
lem with time [83]. Despite the obvious benefits of this approach
with respect to its active counterpart (no need for explicit change
detection, effective with sharp changes in the problem), there are
still questions to be addressed in regards to the balance between
diversity and performance, particularly in what refers to the cou-
pling between the characteristics of the change (speed, severity) and
the amount of diversity to be injected. As such, when the change
evolves slowly and/or does not differ dramatically from the previ-
ous problem status, the diversity to be induced for optimal perfor-
mance should be less than when the problem formulation changes
radically in a certain instant of time. To this end, the interest has
steered towards the use of self-adaptability in both active and pas-
sive approaches, always with bio-inspired solvers at their algorith-
mic core [77,84].

Research directions in the field of dynamic optimization are fore-
seen along the diverse axis: to begin with, most dynamic optimization
problems tackled to date are defined over unconstrained, continuous-
variable search spaces. This experimental choice finds its motivation in
the lack of informed answers to the challenges still faced by the commu-
nity in regards to the role played by the diversity in dynamic environ-
ments of varying characteristics. There are validated empirical pieces
of evidence that align with the intuition, such as the need for ensuring
a higher diversity in population-based heuristics the wider the differ-
ences between shifting problems are. While this statement has been
assessed over extensive dynamic optimization benchmarks comprising
continuous variable problems, this question still remains insufficiently
addressed when the scope is placed on discrete problem formulations,
evolving constraints and/or recurrent concepts. When this is the case,
it is not clear yet how to control or even define the level of diversity
injected to the solver [77].

There are other research venues around dynamic optimization that
should be explored in the near future. Among them, change detection
mechanisms relying on characteristics of the optimization algorithm
itself are known to perform poorly when the optimization problem
varies by any other reason than a change in the problem formulation
itself, such as noisy objectives and/or constraints. In real environments,
it is often the case that the objective evaluation is affected by exter-
nal noise sources that make the fitness value vary over time. This must
not be understood as a change in the problem formulation, but in this
case detection mechanisms based on monitoring the fitness value might
misinterpret it as a problem change and trigger a false alarm. Other
dynamic scenarios where change detection mechanisms are known to
fail catastrophically (e.g. slowly evolving/subtle problem changes) lead
to the overall conclusion that change detection should be avoided and
efforts rather invested on passive/self-adaptive schemes [77,85].

On the other hand, stochastic optimization is a research topic that
came to public attention several decades ago [86–88], with compre-
hensive overviews contributed to the literature ever since [89,90]. This
kind of optimization problems has rapidly grown in importance and
led to the emergence of different trends such as Fuzzy Programming
[91] or Stochastic Dynamic Programming [92]. Among them, Robust
Optimization [93] has particularly protruded in last times: algorithms
within this broad family of solvers define a so-called uncertainty set of
possible realizations of the uncertain parameters underneath the prob-
lem at hand. Robust optimization focuses on optimizing against worst-
case realizations within this set so that a guarantee of optimality can be
given with respect to the defined uncertainty set [94]. Key design chal-
lenges in Robust Optimization reside, on one hand, in the choice of an
uncertainty set properly suited to the problem at hand, so that a good
balance between representativeness and conservativeness can be met
for the problem at hand. For this purpose, several recent studies have
elaborated on different methodological proposals to build good uncer-
tainty sets, including approaches hinging on the partial availability of
data for better adapting them [95,96]. On the other hand, a crescent
need for robust optimization of simultaneous objectives has been noted
lately in related contributions [97–99], with essential questions still
to be addressed such as the definition of uncertainty in Pareto fronts.
Given the paramount importance gained in recent times by EC and SI as
algorithmic propellers of multi-objective solvers, we postulate that fur-
ther developments should be made in deriving new bio-inspired search
operators capable of handling problem uncertainty at the very core of
their definition.

Another rich substrate of new research lines stems from the need
for reliably modeling of real optimization scenarios where the charac-
teristics of several of these problems hold, thereby hybridizing mod-
eling aspects and assumptions from several classes of optimization
paradigms. This is the case of large-scale stochastic optimization [100]
and multi-objective stochastic optimization [101–104], which have
been put to practice in different scenarios with high levels of real-
ism and complexity such as Intelligent Transportation Systems, engi-
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neering, robotics [105], power system planning [106], and hydrology
[107]. Multimodal optimization in dynamic environments has been
likewise addressed in Refs. [108,109]. Many sophisticated heteroge-
neous approaches have been proposed for addressing these demand-
ing problems, such as Memetic Algorithms [110,111] or EC and SI
solvers tailored to deal with real-world environments with noisy objec-
tives [112]. In this context, we highlight the upturn of research around
the confluence of Dynamic and Robust Optimization in what has been
coined as Robust Optimization over Time (ROOT), in which the goal is
to find solutions that remain acceptable (statistically robust) over the
course of time [113,114]. Despite the relative age of this research area
and its inherent practical interest, we foresee that significant advances
can be done if an eye is kept on other sciences and disciplines deal-
ing with uncertainty in dynamical systems, such as Risk Theory [115]
or Lyapunov Optimization [116]. We expect that the hybridization of
concepts and techniques from these fields with bio-inspired search oper-
ators will give birth to a new generation of robust bio-inspired solvers
suited for dynamically evolving environments.

3.3. Multi- and many-objective optimization

Problems comprising several conflicting objectives have sprung a
vibrant research activity during the last 20 years, with an ever-growing
body of literature, competitions, and benchmark focused on deriving
new bio-inspired solvers suited to produce Pareto optimal solutions
with increased efficiency and efficacy. The old days in this subarea of
bio-inspired computation focused on two main strategies to deal with
multiple objectives [117,118]: 1) non-elitist non-Pareto-based methods,
including lexicographic ordering, linear aggregating functions, VEGA,
𝜖-constraint techniques and target vector approaches; and 2) non-elitist
Pareto-based methods such as Pure Pareto ranking, MOGA, NSGA,
NPGA, and NPGA-2. Nowadays most methods rely on some sort of
elitism [119], yielding renowned schemes such as SPEA and SPEA2,
NSGA-II, PAES, PESA, PESA II, 𝜇GA2 and many others. More recent
variants include MOEA/D (and its many variants), SMPSO, SMS-EMOA,
HyPE and NSGA-III [120], which can be classified in three main fami-
lies depending on their design strategy [121]:

• In Pareto-based methods the selection mechanism is based on Pareto
optimality, for which most of them adopt some form of non-
dominated sorting and a density estimator (e.g., crowding, fitness
sharing, entropy, adaptive grids, parallel coordinates, etc.). A well-
known limitation of this family of multi-objective solvers resides in
its restricted scalability in objective function space, which is usu-
ally circumvented by using an overly large population size. Another
alternative to overcome from this limiting issue is to change the
density estimator, but this option has not been too popular.

• An alternative design choice often followed in multi- and many-
objective optimization is to opt for decomposition-based methods.
The core idea of these approaches is to transform a multi-objective
problem into several single-objective optimization problems which
are simultaneously solved using information from its neighbor-
ing subproblems. Unfortunately, the performance of decomposition-
based MOEAs is strongly affected by the scalarizing function that
they adopt, and are further sensitive to the method used to gen-
erate weights. This dependence entails a more tedious parametric
tuning process when aiming to solve a certain problem, thus jeop-
ardizing the universality of this optimization strategy. By contrast,
as opposed to Pareto-based methods they are scalable in objective
function space, although an increase in the number of objectives
will require a higher population size and thereby, a heavier compu-
tational load of the overall solver.

• Another particularly profitable design strategy is to rely on a perfor-
mance indicator for the selection of individuals during the search,
as is done in indicator-based multi-objective solvers. However, the
mere use of a performance indicator in the density estimator was

discovered to suffice for rendering a good performance (as in e.g.,
SMS-EMOA in which the hypervolume is adopted as a density esti-
mator that replaces the crowded comparison operator of NSGA-
II). Unfortunately, the only performance indicator which is known
to be Pareto compliant is computationally expensive in highly-
dimensional objective spaces (i.e., the hypervolume). Many other
performance indicators are available [122], some of which are
weakly Pareto compliant (e.g., R2 and IGD+). However, they have
not attracted much attention in recent literature.

A common practice of current research in multi-/many-objective
optimization is to propose new algorithmic variants based on exist-
ing benchmark functions (e.g. ZDT, DTLZ, WFG, UF), or adapt bio-
inspired solvers to accommodate multi-objectivity. The community will
also continue producing new flavors of the most popular MOEAs in cur-
rent use (i.e. MOEA/D and NSGA-III), but there is surely room for more
creative enhancements and unprecedented algorithmic developments
that can pave unexplored research avenues in this field. Some thoughts
and niches of opportunity in this direction are outlined in what follows:

• There is an urgent need for new ideas regarding the design of multi-
objective solvers that fall aside the current research mainstream rep-
resented by the three major design criteria noted above (i.e., Pareto-
based, decomposition-based, and indicator-based). Looking into new
ways of solving multi-objective problems may be more profitable, in
the long term, than producing continuous updates to existing algo-
rithms that, in most cases, are not adopted by an important number
of researchers. The recent approach reported in Ref. [123] can serve
as a simple example of the viability of this claim: in this work, a
multi-objective optimization problem is transformed into a linear
assignment problem using a set of uniformly scattered weight vec-
tors. The uniform design is adopted to obtain the set of weights, and
the Kuhn-Munkres (Hungarian) algorithm is used to solve the result-
ing assignment problem. This approach was found to perform quite
well (and at a low computational cost) in many-objective optimiza-
tion problems. This approach does not belong to any of the three
previously indicated families of multi-objective algorithms. Besides
exploring new research paths, it is important to gain a deeper under-
standing of the major algorithms in current use. For example, know-
ing that some scalarizing functions offer advantages over others
[124] is very useful to design good decomposition-based and even
indicator-based multi-objective solvers (algorithms based on R2 nor-
mally rely on decomposition).

• Another interesting idea is to combine components of different
multi-objective techniques under a single framework that allows
to exploit their advantages. This is the basic idea of Borg [125],
which adopts 𝜖-dominance, a measure of convergence speed called 𝜖

progress, an adaptive population size, multiple recombination oper-
ators and a steady-state selection mechanism. This hybridization
of operators, in fact, can lead to the automated design of algo-
rithms as has been already suggested by researchers from auto-
mated parameter tuning for single-objective evolutionary solvers. In
this context, a very promising option is the use of hyper-heuristics
to coordinate the use of several types of heuristics with the aim
of combining their advantages in a wide class of problems. As we
will later revisit in Subsection 3.8 (which is partly dedicated to
this branch of bio-inspired computation), the idea behind hyper-
heuristics is the use of a collection of basic (low-level) heuristics,
which on their own do not produce good solutions to a given
optimization problem, to come up with a much better solution by
combining them (or by generating new heuristics from them) by
means of a high-level algorithm [126]. Their main motivation is to
have a more general search engine that can solve a wider variety
of hard optimization problems. Hyper-heuristics have been mostly
developed for discrete search spaces and have been used to solve
mainly single-objective optimization problems. Surprisingly, few
researchers have developed multi-objective hyper-heuristics, despite
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their inherent potential to yield improved heterogeneous solvers for
given families of multi-objective problems. For instance, McClymont
and Keedwell [127] proposed one of the few multi-objective hyper-
heuristics that has been designed for continuous optimization prob-
lems. Their approach applies a heuristic selection method modeled
as a Markov chain to the DTLZ test problems. Maashi in her Ph.D.
Thesis [128] proposed an online learning selection choice func-
tion based hyper-heuristic framework for multi-objective optimiza-
tion. Her proposed approach controls and combines the strengths
of three well-known bio-inspired multi-objective solvers (NSGA-II,
SPEA2, and MOGA), which are adopted as her low-level heuristics.
The indicator-based multi-objective sequence-based hyper-heuristic
(MOSSHH) algorithm proposed in Ref. [129] was the first attempt
to use a hyper-heuristic in many-objective problems. The study com-
pares three indicators (one based on average rank, the hypervolume
and the favor relation) with Pareto dominance in many-objective
problems. In Ref. [130] a multi-objective hyper-heuristic based on
a choice function was proposed to adaptively select appropriate
low-level heuristics (operators) within MOEA/D. The pool of low-
level heuristics consisted of five differential evolution operators.
More recently, a hyper-heuristic was proposed in Ref. [131] to com-
bine the strengths and compensate for the weaknesses of different
scalarizing functions. The selection is conducted through an indica-
tor called s-energy, which measures the even distribution of a set of
points in k-dimensional manifolds. Combining different performance
indicators within an indicator-based multi-objective solver is the
proposal of [132], in which IGD+, 𝜖+, Δp and R2 are adopted as pos-
sible density estimators (i.e., the low-level heuristics). Another strat-
egy connected to hyper-heuristics and automatic algorithm compo-
sition is the combination of different off-the-shelf algorithms under
a single control mechanism, as done in e.g. AMALGAM [133].

Despite the impulse around multi-objective hyper-heuristics exposed
above, we still need more theoretical studies to better comprehend their
superior performance in the reported cases so far. In fact, some work
in that direction has been already done. For instance, Qian et al. pro-
vided in Ref. [134] a theoretical study on the effectiveness of selec-
tion hyper-heuristics for multi-objective optimization, concluding that
selection hyper-heuristics applied to any of the three major components
of a multi-objective evolutionary algorithm (selection, mutation, and
acceptance) can exponentially speed up the optimization process. More
theoretical findings to be contributed in the future should unveil new
possibilities for the design and construction of hybrid multi-objective
optimization algorithms, specially bearing in mind the emergence of
new bio-inspired search operators.

• An aspect that has also attracted great attention in the last couple of
years is the scalability of multi-objective techniques when address-
ing problems with many objectives. The reason behind this research
trend lies on the fact that off-the-shelf multi-objective solvers do
not scale properly under such circumstances. For instance, the num-
ber of non-dominated solutions is known to grow exponentially
with the number of objectives [135], which makes the selection
mechanism in Pareto-based methods completely useless since all the
non-dominated solutions are considered equally good. There is also
another interesting problem related to scalability: as we increase
the number of objectives, the number of solutions required to sam-
ple the Pareto front also grows exponentially, further complicating
an efficient exploration of the search space of the problem at hand.
In this context it is also interesting to highlight the empirical work
reported in Ref. [136], where it was shown that a random search is
more effective than NSGA-II when dealing with more than 10 objec-
tives. As a result, many-objective optimization deals with the design
of scalable search algorithms for problems characterized by many
(typically more than 3) objective functions.

In the early days of this area, two types of approaches were com-
monly adopted to cope with many-objective optimization problems: 1)
to adopt or propose a preference relation that induces a finer grain
order on the solutions than that induced by the Pareto dominance rela-
tion; or 2) to reduce the number of objectives of the problem during
the search process or during the decision making process. Many other
approaches are possible, including, for example, the use of machine
learning techniques (as in MONEDA [137]), performance indicators (as
in SMS-EMOA [138]), 𝜖-dominance or the two-archive MOEA, which
uses one archive for convergence and another for diversity [139].

The source of difficulty in many-objective problems has been exten-
sively studied in recent times, with specific complexity factors that by
themselves open up new challenging avenues in this area. Several works
are the baseline reference in this regard: to begin with, Ishibuchi et al.
considered in Ref. [140] five types of difficulties that arise in many-
objective problems, including the typical ones (e.g., difficulties to gen-
erate a good approximation of the entire Pareto front) and others that
are not so obvious (e.g. difficulties to assess performance). By that time,
Schütze et al. had already concluded that adding more objectives for a
given problem does not necessarily make it harder [141], an insight that
was later empirically confirmed in Ref. [140] by showing that NSGA-II
could properly solve many-objective knapsack problems whose objec-
tives were highly correlated. However, many other challenging aspects
related to many-objective optimization deserve to be studied in the near
future, from density estimators (what to use and what sort of distribu-
tions do we aim to find?), the visualization of high-dimensional Pareto
fronts and performance indicators suited for this family of optimization
problems (at least not as expensive as the hypervolume).

• A multi-objective optimization area that has lately attracted atten-
tion is the scalability of multi-objective solvers in terms of the num-
ber of decision variables. Almost no work had been published on this
topic until a few years ago, when a small study reported results in
problems that were scaled up to 100 decision variables [15], later
extended to more than 2000 variables and several multi-objective
solvers [142]. Remarkably, in this work, PAES was found to be the
most salient technique from the several compared (NSGA-II, SPEA2,
MOCell, OMOPSO, and PESA-II). OMOPSO did very well up to 256
decision variables and ranked second between 512 and 1024 deci-
sion variables. Years later, the first multi-objective solver designed
for large-scale multi-objective optimization was proposed in Ref.
[143], where CC (Cooperative Coevolution) was used to tackle prob-
lems amounting up to 5000 decision variables.

Although other large-scale multi-objective optimization techniques
have been proposed since then [144–146], several topics remain to be
explored in this area. For example, there are no many sets of test prob-
lems explicitly designed for testing large-scale multi-objective problems
[147]. Furthermore, large-scale many-objective optimization problems
have recently entered the research arena, e.g. Ref. [148], thereby
unfolding many challenging paths blending together complexities from
both areas.

Clearly, the main challenge for the coming years is to continue
to open new venues of research in bio-inspired multi-/many-objective
optimization. This is becoming increasingly difficult, given the huge
volume of research that has been conducted and is currently ongoing
around the world. We need to be more creative: there are still plenty of
topics to study within this field, but some of them require moving out-
side the main stream of the research that is currently being conducted.
For example, we need new performance indicators, particularly for
many-objective optimization. We lack appropriate performance indi-
cators for assessing diversity in many-objective optimization, although
there are some interesting choices (e.g. s-energy). It is also important to
design new mechanisms (search operators, encoding strategies) realisti-
cally modeling specific features of real-world problems (e.g., heteroge-
neous and/or variable length encoding [149–151], expensive objective
functions, uncertainty or highly-constrained search spaces [152]). Co-
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evolutionary approaches can help solve complex multi-objective opti-
mization problems, which also unleashes another interesting path for
future research. Besides large scale problems, co-evolution can be useful
in other domains – e.g. dynamic multi-objective optimization problems
[81] – but its potential has been scarcely studied [153].

However, it is important to keep in mind that a great source of diver-
sity regarding research ideas is the knowledge coming from other disci-
plines. For example, our field has adopted advanced data structures
(e.g., red-black trees), concepts from computational geometry (e.g.,
convex hulls, quadtrees and Voronoi maps), and from economics (e.g.,
Game Theory) to design novel search algorithms and operators. We also
need to explore more ways of bridging the gap between this field and
elements from Operations Research, such as mathematical program-
ming [154]. Another one is the use of the Karush-Kuhn-Tucker opti-
mality conditions to estimate proximity of a solution to the Pareto opti-
mal set [155]. All in all, diversity, heterogeneity and synergy between
different disciplines must be ensured within the community working
in order to attain more disruptive and scientifically valuable advances
not only in multi-/many-objective optimization, but also in other areas
within bio-inspired optimization. Otherwise, if we only investigate by
analogy, research in this area will eventually suffer from stagnation.

3.4. Multimodal optimization

Multimodal optimization problems consist of finding multiple opti-
mal solutions within a single algorithm run, in order to have a bet-
ter knowledge about the different solutions in the search space [156].
Population-based bio-inspired algorithms are the most used approaches
to solve multimodal optimization problems, specially those includ-
ing diversity-preserving mechanisms, also known as niching methods
[157,158]. Research on multimodal optimization techniques, mainly
evolutionary algorithms, had a boom in the early 2000s, and has been
a research topic of importance until today, as can be seen in Fig. 2
(stacked bar colored as ). According to Ref. [158], there are several
reasons why multimodal search is important in real-world problems:

• Locating multiple optimal solutions of a problem improves the
knowledge of the problem domain, much more than in single-
solution cases.

• Multiple solutions with optimal quality provide a decision maker
with a wider portfolio of options for consideration, based on which
different factors can be applied to choose the best option in each
case.

• Looking for multiple optimal solutions can be good in terms of
improving the search capabilities of the algorithm since the compu-
tational effort is diversified to explore different regions of the search
space.

• Diversity methods involved in multimodal optimization algorithms
are able to improve the quality search of the algorithm since they
counteract the effect of genetic drift, which causes diversity loss in
bio-inspired algorithms.

Motivated by these benefits, the literature has been rich in regards to
niching approaches that have been combined with bio-inspired heuris-
tics in order to help them properly search over multimodal fitness land-
scapes. For the sake of completeness, in what follows we briefly describe
some of the most classical approaches for niching in evolutionary algo-
rithms [157]:

• Fitness sharing, originally introduced in Ref. [159], consists of
dividing the population of a bio-inspired algorithm into subgroups,
according to a measure of similarity between solutions. Thus, an
individual must share its information with individuals belonging to
the same niche area. To this end, a rule must be defined by which
every individual’s fitness is decreased by an amount depending on
the number of similar individuals in the population. A usual way
to proceed in this matter is to modify the fitness of the i-th indi-

vidual in the population as f ′i = fi
mi

, where mi is known as the niche
count measuring the approximate number of individuals close to the
i-th individual. The niche count is usually established depending on
the similarity dij between the i-th and j-th individual. The similarity
dij is typically measured over the genotype or the phenotype of the
problem.

• The clearing method is very close to the fitness sharing approach but
is instead based on the concept of limited resources of the environ-
ment [160]. Instead of sharing resources between all individuals of
a single subpopulation as in fitness sharing, clearing methods assign
them only to the best members of the subpopulation, in such a way
that this operator preserves the fitness of the some of the best indi-
viduals (dominating individuals) of the niche, and resets the fitness
of the others individuals in the population (correspondingly, domi-
nated individuals).

• In crowding schemes for multimodal optimization [161], only a per-
centage of the population reproduces and dies in each generation of
the evolutionary search. The newly generated individuals replace
similar ones in the population. For this purpose, a subset of indi-
viduals is drawn at random from the population, whose cardinality
(in % with respect to the population size) is referred to as Crowding
Factor. Then, a new generated individual replaces the most simi-
lar element in this sample, taking into account a distance function
dij similar to the one defined above. This approach was improved in
Ref. [162] leading to probabilistic crowding, where different tourna-
ments between similar individuals (parents and offspring) are car-
ried out. When producing offspring, however, the whole popula-
tion is used, hence parents can be potentially drawn from different
niches. This results in a poor exploitation capability of the overall
search heuristic in distinct niches, thereby motivating alternative
strategies as the ones following hereafter.

• Speciation [163] and islanding [164] are other ways of dealing with
multimodal optimization problems. On one hand, the speciation
technique divides the population into several species according to
their similarity, so each species focuses on a different solution of the
problem. Islanding follows the same design principle but defines sev-
eral subpopulations or islands where individuals are independently
evolved.

• The induction of niching behavior within the individuals produced
by a bio-inspired solver can make them converge efficiently around
different basins of attraction. To this end, in addition to the general
niching strategies outlined above, an alternative is to exploit the
concept of neighborhood, a relationship between individuals over a
distance space that can be used, for instance, to adaptively adjust the
amplitude or frequency by which bio-inspired operators are applied,
replace the stochastic nature of parent selection strategies, or to con-
trol the migration of individuals between different basins.

Two main niching strategies can be adopted when facing multi-
modal optimization problems with population-based meta-heuristics: 1)
index-based topologies for niching, which define the neighborhood of
an individual based on its index within the population and a predefined
topology (e.g. a ring or a star); and 2) Euclidean distance based nich-
ing, which fixes the neighborhood relationship between encoded solu-
tions in the population based on their Euclidean distance. Euclidean
neighborhood was first used to generate offspring in Ref. [165] for
single-objective bound constrained problems. Subsequently [166], was
the first work to use Euclidean distance for generating offspring within
each neighborhood, enhancing, as a result, the local exploitation around
each niche. Several other contributions have since then used Euclidean
distance based neighborhood niching induction for multimodal prob-
lems [167–170]. However, the use of neighborhoods and other con-
cepts related to topology spans further possibilities in other areas of
bio-inspired optimization, such as multi-objective optimization (e.g.
MOEA/D resorts to the definition of a neighborhood structure to trans-
fer information between subproblems).
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In the last few years, bio-inspired solvers have thrived as the default
algorithmic choice in multimodal optimization, producing new algo-
rithms and drawing up new paradigms related to this optimization
casuistry. Of special interest are the findings reported in Ref. [171],
where it was shown that a single-objective multimodal problem can be
reformulated as a bi-objective optimization problem, so that heuristics
developed for this alternative problem statement were proven to effi-
ciently tackle more complex multi-modal search spaces than contempo-
rary algorithms, comprising a larger number of variables and number
of optima. Beyond the relatively improved performance of its proposed
approach, this work paved the way towards the application of multi-
objective bio-inspired solvers to the multimodal case, and further exem-
plified how the synergy between different areas in bio-inspired compu-
tation can yield new efficient approaches to tackle classical problems.
In fact, this intuition has been at the core of a number of recent pub-
lications, see e.g. Refs. [167,172] and citing contributions thereafter.
It is also worth noticing that niching is also considered a very effec-
tive strategy to improve the performance of multi-objective algorithms
[158], an observation which reinforces even further the aforementioned
profitable synergy between both areas of bio-inspired optimization.
Research efforts in the future should strive for exporting advances of
one area to another and vice versa. This being said, late advances in
many-objective optimization could serve as a source of inspiration to
develop new approaches for effectively solving multimodal optimiza-
tion problems.

An alternative research line in multimodal optimization aims at
defining tailored solvers with biological inspiration at their core to
when addressing these problems, among which we underscore the
prominent role taken by PSO in recent times [173–175]. Indeed, the
notion of memory, inherent to PSO, is exploited to induce niching
behavior. Usually, a swarm is divided into two parts: 1) an explorer
swarm (with the current particles) and 2) a memory swarm (with
only the best particles found so far by the algorithm). The underly-
ing idea is that best particles within the memory swarm act as solution
niches, eventually locating multiple solutions to the problem. Alterna-
tive proposals to multimodal problems using PSO algorithms have grav-
itated on the use of multi-swarms [176], the induction of Euclidean-
based niching [168] or a ring topology in the neighborhoods within
the swarm [177]. Another bio-inspired solver successfully applied to
multimodal optimization is DE, which has been hybridized with fit-
ness sharing [11], speciation and islanding [178]. In light of this pre-
ceding research record, it is only a matter of time that the commu-
nity will receive studies dealing with the hybridization of new bio-
inspired techniques with traditional strategies to tackle multimodal
problems.

Finally, Machine Learning should capitalize on bio-inspired solvers
for multimodal optimization, in problems related to feature selection
[179] or model calibration [180]. We do think that this is an extremely
interesting research line that spans far beyond multimodal optimiza-
tion, which we expect will be further growing in the near future. We
will later revolve on this statement.

3.5. Topologies

Contributions related to the design of topologies within population-
based heuristics elaborate on the control of the information flow among
population members by specifying the nature and outreach of their
interactions [181,182]. By appropriately defining topologies within the
population/swarm, it becomes possible to emphasize global exploration
and/or local exploitation. The rationale behind the design of topologies
lies on the widely acknowledged fact that the overall search perfor-
mance of evolutionary algorithms can be significantly biased by how
individuals in the population are organized and interact with each
other. As such, many different topological schemes have hitherto been
proposed by advancing over the so-called panmictic topology, in which
all population members can mate with any other member. This simple

topology, which lies at the core of naive versions of well-known evolu-
tionary algorithms such as GA, is known to foster the rapid dissemina-
tion of information among the individuals, yielding a progressive loss
of diversity and ultimately, a potentially premature convergence of the
overall search process. This is the reason why more elaborated topo-
logical schemes have been extensively analyzed in recent years, often
relying on the definition of a structural neighborhood between individ-
uals. A recent comprehensive overview on this topic can be found in
Ref. [183].

As has been foretold in Subsection 3.4, the criterion by which the
above neighborhood relationship is defined established two general cat-
egories of topologies for population-based heuristics: those based on
the population index of the individuals and a predefined structure (e.g.
ring, wheels, random, von Neumann or star, among others) that dic-
tates how information flows among them; and those based on a measure
of distance to dynamically determine which solutions are neighbors of
each other. Furthermore, topologies can be endowed with further char-
acteristics to make them better perform in certain problem setups. As
such, topologies can be static or dynamically adapted along the run.
Likewise, heterogeneous topologies [184] enforce different topological
relationships (e.g. tighter or looser connectedness) between subpopu-
lations, to the extreme of generating them in a randomized manner
[185]. Once the topology is established, good solutions encountered
during the search process are spread throughout the whole population
or exploitation subpopulation, yielding an improved convergence and
superior optimality in many flavors of optimization problems such as
bound constrained single-objective optimization, multi-objective opti-
mization and multimodal niching.

Topologies can be also defined within the subpopulations or islands
(also referred to as demes) of a distributed EA. Although we will elabo-
rate further on this area of bio-inspired optimization in Subsection 3.8,
it is important to note that the interaction between such isolated islands
(which evolve independently) takes usually the form of a migration
policy, which selects which individuals are moved or copied between
subpopulations. Therefore, the migration policy can be regarded as a
topology between demes in distributed bio-inspired solvers. By care-
fully tailoring the migration policy one can balance between explo-
ration (demes do not interact with each other and search over the solu-
tion space in isolation) and exploitation (individuals are occasionally
migrated between islands). Therefore, independent intra-deme evolu-
tion and migration schemes must be devised to match a good balance
between exploration and exploitation, which in turn intersects with the
characteristics of the optimization problem at hand and the operators
of the heuristic algorithm themselves.

Regarding this noted threefold intersection, certain population
topologies have been found to perform better than others when applied
to solve a given class of optimization problems. An example support-
ing this statement can be found in multimodal optimization problems
where, as mentioned in Subsection 3.4, topology-based niching meth-
ods relying on multiple subpopulations have been extensively stud-
ied in the literature. In problems composed by single optima, how-
ever, panmictic topologies are more suitable than their sub-population
based counterparts. Unfortunately, there is still no clear understand-
ing of the theoretical foundations behind this match between problems
and topologies, nor can we predict which topology performs best for a
given problem. This unsolved issue triggers a wave of future research
towards extensively designing new population topologies capable of
dealing with problem classes that have been tackled with topology-
based heuristics to a much lesser extent than multimodal and uni-
modal problems, such as constrained, multi-objective, large-scale, or bi-
level, among others. Efforts are also foreseen to be needed towards the
extrapolation of the topology concept to other heuristics than DE and
PSO, which have so far monopolized the literature related to this area.
Finally, a promising research direction is to jointly consider topologies
and ensemble strategies (Subsection 3.8) as a means to leverage the
superior explorative/exploitative powers of ensembles and delegate the
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search intensification in tailored topologies set within the population of
each member of the ensemble.

3.6. Surrogate model assisted optimization

In certain applications such as aerospace design, optics or biomedi-
cal engineering, problems tackled by bio-inspired optimization methods
usually rely on computer simulations. Such simulations are conducted
not only for testing purposes but also to properly tune the configu-
ration of the overall system by providing a quantitative indicator of
its performance. Unfortunately, accurate testing processes entail high
computational efforts, with evaluation times that range from hours to
days per experiment. Hence, the efficient design of bio-inspired solvers
is often an extremely time-consuming task, becoming prohibitive even
for the powerful computation means available nowadays. The lack of
sensitivity information and numerical noise usually present in experi-
mental outcomes can also be deemed as issues falling within this spe-
cific context. These problems, and other related ones can be mitigated
by the adoption of surrogate models, which reliably portray the expen-
sive simulation-based model in a cheaper and analytically tractable
way. Simulation-driven studies supported on surrogate model assisted
optimization have gained great popularity, allowing the community to
address problems that could not be tackled otherwise, and dramatically
reducing the computational costs of the problem-solving process. Fur-
thermore, once built to achieve an admissible accuracy level, the sur-
rogate model can be exploited to provide hints about where promising
candidate solutions are located over the solution space, thereby serving
as a driver for optimized heuristic search operators.

Several comprehensive surveys can be found in the literature,
highlighting different aspects of this specific field. Two remarkable
overviews are the ones in Refs. [186,187], which focus on aerospace
sciences, a sector where surrogate model based optimization has been
utilized in manifold design applications due to the complexity of con-
ducting real experiments. In fact, many other recently published con-
tributions revolve on applications within this sector: this is the case
of [188], for example, which aims at showcasing that surrogate-based
global optimization is feasible for aerodynamic shape optimization with
a high number of design variables. Likewise, in Ref. [189] a solver based
on the Kriging surrogate model and parallel infill-sampling method is
proposed for the aerodynamic shape optimization of a swept natural-
laminar-flow wing. Authors of that study claim that the main challenge
in this study links to the trustable prediction of laminar–turbulence
transitions and reasonable compromise of viscous and wave drags.
Another recently presented work is [190], which explores the feasibil-
ity of a hybrid approach based on evolutionary algorithms and support
vector regression to reach optimal configurations of the landing gear
master cylinder. In this research study, the aerodynamic shape design
problem is also approached by using surrogate models and intelligent
estimation search with sequential learning (IES-SL, [191]).

Surrogate models are also appropriated for problems arisen in other
disciplines and sectors. For instance, the design of different types of
antennas for wireless communications has also undergone significant
research with surrogate models in recent years. In Ref. [192], for
instance, the design of an ultra-wideband antenna with an integrated
balun is faced by an automated numerical surrogate-based optimiza-
tion. Authors in Ref. [193] claim that the design of contemporary anten-
nas requires the configuration of an unprecedentedly high number of
parameters to configure, which exacerbates the complexity of the over-
all design problem. To alleviate it, they introduce a novel two-level
method for the surrogate modeling of antenna structures using Kriging
interpolation models. Another example of the prevalence of surrogates
in antenna design problems is [194], where a multi-objective formula-
tion of this problem is tackled by considering performance and robust-
ness as conflicting objectives, and by automatically selecting the best
surrogate among a portfolio of possible models (namely, polynomial
regression, Gaussian process regression, and Kriging).

A stimulating general review on the area of the surrogate model
assisted optimization has been recently presented in Ref. [195]. Among
many other interesting aspects, this review highlights that the effi-
cient use of surrogates entails great savings in terms of computational
resources, but also pinpoints the complexity of selecting an appropriate
surrogate due to the variety of available models. In this study authors
discuss on frequently used approaches for obtaining surrogates, stress-
ing particularly on recent advances in this regard. Regression models
such as linear regression and support vector regression are discussed,
despite an emphasis is placed on Kriging and Radial Basis Functions
(RBF). These two interpolation models are among the most popular
ones for feasibility analysis and optimization by virtue of their capabil-
ity to provide a quantitative measure of prediction uncertainty. This has
allowed these models to prevail in many applications, such as design
simulation [196] and pharmaceutical process simulations [197] in the
case of Kriging, and parameter estimation [198] or water pumping opti-
mization [199] in the case of RBF.

Several important challenges can be outlined within this specific
topic. To begin with, it remains unclear how surrogate models could
efficiently tackle complex problems composed by a high number of
dimensions. A growing amount of studies are recently echoing this issue
[194,200], putting in question the efficiency of traditionally used meth-
ods like the ones mentioned previously [201,202]. New mechanisms
and existing methods are being lately combined to face this issue, as in
Ref. [201] where Kriging is hybridized with partial least squares. Deep
Learning models could also enter this arena by incorporating techniques
proposed lately to quantify the statistical reliability of their predicted
output, as those exemplified by Ref. [203] or provided off-the-shelf by
Bayesian deep models [204]. The challenge for the deep models will be
to learn within a limited number of function evaluations.

A higher dimensionality of the problem under consideration also
requires further improvements for the optimization algorithm itself.
Sophisticated evolutionary methods are receiving attention in recent
years, such as cooperative PSOs [200], hierarchical PSOs [205] or
Cooperative Co-evolutionary approaches [206]. The applicability of
LSGO techniques should also be inspected in this regard in combi-
nation with the aforementioned Deep Learning surrogates. We fore-
see that this synergy may have a groundbreaking effect in the scala-
bility of problems addressed with surrogate models and bio-inspired
optimization.

3.7. Distributed evolutionary algorithms

Since most real-world applications can be highly nonlinear and
large-scale, bio-inspired algorithms that work well for small-scale or
moderate-scale problems need to be modified and parallelized in imple-
mentations. Though multi-agent, population-based algorithms can be
suitable for parallelization, it is not clear what is the best way to par-
allelize them. In addition, simple processing parallelization may not be
enough to solve truly large-scale problems with thousands or millions
of variables. Certain modifications and enhancements are needed, even
though it is not clear yet how to achieve such effective modifications at
the moment.

In this context distributed Evolutionary Algorithms (dEA) come to
the scene by deploying different populations of solutions on distributed
systems in order to improve the performance of sequential (tradi-
tional) evolutionary solvers [207,208]. dEAs also include co-evolution
type algorithms, which tackle high dimensional problems through dis-
tributed divide-and-conquer mechanisms. A recent tutorial of the most
important distributed techniques in EAs is given in Ref. [209], which
classifies dEAs in population-based models (island, cellular, master-
slave, hierarchical and pool) and dimension-based approaches (co-
evolution and multi-agents). We review here the most important char-
acteristics of dEAs following a similar structure for describing each
model of dEA, i.e. starting with population-based dEAs and finish-
ing with dimension-based models such as co-evolution algorithms. A
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Fig. 4. Example of (a) a master-slave dEA model; (b) an island dEA model; (c) a cellular dEA model; (d) hybrid ⟨island, cellular⟩; (e) hybrid ⟨island, island⟩.

schematic representation of all these parallel computation strategies for
bio-inspired computation is depicted in Fig. 4.

To begin with, the master-slave model is a simple albeit effective
dEA model [209,210]. In this class of distributed optimization models,
bio-inspired search operators are executed in the so-called master part
of the algorithm, and evolved individuals are then delivered to slave
processors for fitness evaluation. In this case, it is considered that the
fitness evaluations of the individuals are independent, so there is not a
need for communication among slaves processors. The distributed fit-
ness computation featured by these dEAs makes them especially well-
suited for those cases where most of the computational complexity of
the problem at hand is concentrated on the computation of the fit-
ness. Therefore, when parallel processing capabilities are available they
are an efficient alternative to other methods such as surrogate-model
assisted optimization.

The second dEA discussed in this subsection is the island model
[211], which is a coarse-grained evolutionary algorithm where differ-
ent sub-populations of solutions are considered, each processed by a
different processor. Communications between islands are allowed and
occur when certain individuals migrate among them at given times of
the evolution. The migration mechanism is an important design part
of island models, including the migration topology, its frequency, and
extent, as well as the replacement policy in the destination island.

Slightly linked to the island model introduced above, a cellular dEA
model [212] is a fine-grained, spatially-structured approach, which con-
sists of just one population whose individuals are arranged on a grid of
processors (cell). Interaction among individuals handled by the evolu-
tionary algorithm is done by using communications paths defined by
a network topology in the dEA. Thus, each individual in the popula-
tion can only interact with those individuals within its neighborhood.
As the neighborhoods of individuals are overlapping with each other,
good individuals tend to propagate to the entire population of the algo-
rithm.

A rather different strategy is followed in the hierarchical dEA model,
also referred to as the hybrid model [213]. It combines two (or more)
distributed models hierarchically, such as the ⟨island,master − slave⟩
or ⟨island, cellular⟩, among other combinations. The underlying idea
of these approaches is to improve the search capabilities of the whole
heuristic by embedding characteristics of both models into a single
algorithm. The last population-based dEA reviewed in this subsection
is the pool dEA model, in which a set of autonomous processors are
deployed to work on a shared resource pool. Processors are loosely
coupled, in such a way that they do not know each other’s existence
and only interact with the pool [214]. The pooled model provides
a natural approach to asynchronization and heterogeneity in dEAs,
of inherent interest for their deployment in non-controlled computing
frameworks.

In what refers to dimension-based models, Cooperative Co-evolution
(CC) provides a powerful divide-and-conquer architecture for computa-
tionally hard optimization problems, such as LSGO [215–217]. In CC
a highly-dimensional or complex optimization problem is divided into
several simpler sub-problems, which will be solved by different meta-
heuristics. Provided that the problem formulation allows for such a
decomposition, sub-problems in which it is split can be solved inde-
pendently, so that once the optimization process has been completed
the solution of the problem can be obtained by assembling all pro-
duced solutions to the sub-problems together. However, when complex
interdependencies exist between sub-problems, the CC model can still
be applied in such a way that each computing node performs a local
evolution process in a solution subspace. Then, by enforcing commu-
nication between nodes, they can adaptively adjust their search direc-
tion and cooperatively move towards regions of higher optimality for
the problem at hand. A dimension-based approach is also present in
multi-agent models [218], which differs from CC in that they do not
require any direct coordination of agents to evolve. Instead, agents are
endowed with game-theoretic behavioral rules such that they optimize
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local functions and negotiate mutually to reach some stable equilibrium
and thereby, complete the optimization task efficiently.

Recent activity on dEAs has been intense, with many different real-
world applications having been addressed by parallel bio-inspired tech-
niques falling within this category. Remarkable advances in this regard
include [219], where new approaches for migration in dEAs based on
biological invasions are proposed and proven to be particularly well
suited for island genetic algorithms, showing improvements over alter-
native migration schemes. Another interesting work in this line is [220],
where a new discretization scheme for Big Data processing based on a
multivariate dEA is proposed and tested in different large-scale classi-
fication instances, such as ECBDL14, a highly unbalanced classification
database consisting of 32 million instances with an unbalance ratio over
98%. In all the tested problems the proposed dEA-based discretizer per-
formed best, attaining superior accuracy rates. Unsupervised classifica-
tion over large-scale datasets has also been tackled by adopting dEAs,
such as [221], where an island genetic algorithm is proposed for fuzzy
partition problems, or [222], where dEAs are applied to improve a k-
Means clustering algorithm. There has been also active research around
more practical versions of dEAs, in areas such as large-scale optimiza-
tion [223–225], Electromagnetism [226], Computational Fluid Mechan-
ics [227], energy planning [228] or neural networks training [229].

Besides large-scale data mining, a multi-objective optimization is
another research subarea where dEAs can yield profitable computa-
tional gains. The main motivation to develop parallel multi-objective
solvers is to deal with expensive objective functions, which are com-
mon in real-world applications comprising multiple criteria. However,
something surprising is that the design of new parallel approaches is
very rare in the specialized literature [230]. We are lacking work on
the development of asynchronous parallel multi-objective solvers, and
their comparison with respect to their synchronous counterparts (quite
in line with the work in Ref. [231]). We also need parallel multi-
objective optimizers designed to run on GPUs, following early work
in Ref. [232]. Another interesting topic is the change of granularity in a
parallel multi-objective algorithm (with a unidirectional topology) with
the aim of performing a more efficient search [233]. There are many
other possibilities. For example, the use of asynchronous parallelism
combined with the use of micro-populations was adopted in Ref. [234]
to yield S-PAMICRO (PArallel MICRo Optimizer based on the S met-
ric), a computationally efficient (parallel) version of SMS-EMOA that
uses exact hypervolume contributions. Above all, a crucial task that
the community should engage with is to exploit parallel architectures
by designing multi-objective bio-inspired techniques that explicitly take
advantage of a particular parallel architecture (e.g., grid computing or
GPUs), rather than simply producing ad-hoc parallel versions of existing
multi-objective evolutionary algorithms such as MOEA/D and NSGA-II.
There are, however, many other research topics worth to be explored
in the intersection between dEAs and multi-/many-objective optimiza-
tion, such as the impact of the topology on the performance of a parallel
solver and the management of diversity among distributed populations.

Future advances in the area of dEAs should be focused on better
exploiting their capabilities, by inspecting radically new search meth-
ods hinging on distributed computing resources, and also assessing their
applicability in general application scenarios such as LSGO and Big
Data. Regarding the former, an interesting line stems from the deriva-
tion of heterogeneous search algorithms merging different encoding
strategies, bio-inspired operators and constraint handling techniques
[235] into a single unified search algorithm suited for parallel imple-
mentations [236]. This research has been explored in the literature
recently when a heterogeneous meta-heuristic technique was proposed
in Ref. [237] and later adapted in Ref. [238] for LSGO problems. In
this regard, we recommend [239] for a comprehensive overview of
ensemble strategies for population-based bio-inspired algorithms, with
connections and prospective insights into their applicability for LSGO,
multimodal, multiobjective dynamic and constrained optimization.

As for developmental application lines in dEAs, LSGO and Big Data
problems in Earth and Atmospheric Sciences, Global Energy Demand
or Climate Change studies are some of the most important areas where
dEAs could have a deep impact due to the computationally challenging
characteristic of these problems. Alternative applications in problems
involving a huge amount of variables, observations and/or objectives
are also of utmost interest for dEAs, as those frequently occurring in
Finance, Bioengineering or Biomedicine, among others.

3.8. Ensemble methods and hyper-heuristics

The concept of ensemble in optimization refers to the use of multiple
search strategies, subpopulations, algorithms, rules for selecting next
generation population, operators and/or parameter values to tackle an
optimization problem [239]. The idea is that the ensemble strategy can
obtain better results than a single strategy, specifically, better than the
ensemble composites working on their own, when applied to a given
optimization problem. Following [239], ensembles for optimization can
be classified by taking into account different characteristics of the tech-
nique at hand, mainly the type of constituent elements and the applied
implementation technique. First, when the ensemble combines different
types of search strategies, operators or constraint handling techniques,
it is known to be a low-level ensemble. On the other hand, high-level
ensembles refer to methods that adaptively select the best optimization
algorithm for a given problem among a set of candidate algorithms
[240,241]. Ensemble methods can be also categorized regarding their
implementation structure, resulting in competitive single/population,
competitive multi-population, and cooperative multi-population ensem-
bles.

Low-level ensembles include multi-methods and multi-strategy
approaches developed in the last decade. Multi-methods algorithms
consider the combination of different operators or algorithms to solve
an optimization problem. Examples of low-level competitive single
population approaches are those proposed in Ref. [242], where dif-
ferent search operators are jointly applied and self-adapted in the
same genetic population, or [238,243], where a set of “substrates”
are defined in a Coral Reef Optimization algorithm, representing the
application of different search operators defined in a single population.
Multi-methods have been also applied to improve multi-objective opti-
mization problems [244,245]. Other multi-methods operate on differ-
ent sub-populations, yielding competitive multi-population approaches
such as the one in Ref. [246]. Alternative low-level ensembles involving
other algorithmic components have been also proposed in the literature,
such as neighborhood sizes [247], constraint handling techniques [248]
or niching [249] among others.

High-level ensembles have been also applied to optimization prob-
lems with success. For example [250], proposes a portfolio of different
algorithms to be applied in optimization problems, choosing the best
combination of algorithms depending on the problem under consider-
ation. In Ref. [251] a comparison of different high-level multi-method
ensembles is carried out. Multi-strategy ensembles choose among dif-
ferent versions of the same search strategy to solve optimization prob-
lems, usually in a competitive fashion in single or multiple popula-
tions. Ensembles of multi-strategy approaches based on different algo-
rithms have been proposed in the literature, for example, based on
DE [252,253], PSO [254], Artificial Bee Colony algorithms [255] or
Biogeography-based optimization [256].

Closely related to the idea of ensemble methods, the hyper-heuristic
paradigm appeared in the early 2000s as a novel computation paradigm
useful to tackle hard optimization problems. As already mentioned in
Subsection 3.3, hyper-heuristics have been defined as “search meth-
ods or learning procedures for selecting or generating heuristics for
a given optimization problem” [257]. Hyper-heuristics operate on a
set of simple heuristics – which by themselves do not render good
results for a given optimization problem – and combine them via a
higher-level algorithm towards achieving much better solutions [126].
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In other words, a hyper-heuristic seeks the automated construction of
new heuristics highly adapted to efficiently solve a given optimization
problem; for this purpose, the hyper-heuristic algorithm at hand must
explore a search space spanned by low-level heuristics by using hyper-
heuristic operators defined for selecting, modifying, combining and/or
constructing heuristic methods.

Following [126], hyper-heuristics can be classified in different cat-
egories depending on the nature of the heuristic search space. Thus,
hyper-heuristics are classified into hyper-heuristics for heuristic selec-
tion, that comprises those methodologies focused on choosing or select-
ing existing heuristics, and hyper-heuristics for heuristics generation, that
includes those methodologies focused on creating new heuristics from
existing ones. Focusing on heuristic selection, the process to construct
the complete algorithm is quite simple: first, it is necessary to select a
set of good low-level heuristics for the optimization problem at hand.
Note that this idea is quite related to the concept of low-level ensem-
bles. It is not necessary that the heuristics on their own are very effec-
tive in solving the problem, but their number should be large enough
to generate a large search space [258]. Then, a high-level approach
must be selected in order to obtain the best set of low-level heuris-
tics and how to apply them to solve the problem. In many cases, this
high-level algorithm is a meta-heuristic (evolutionary algorithm, ants
algorithm, particle swarm, etc.), which requires a proper encoding of
the low-level encoding to perform the search. This encoding strategy
stringently depends on the problem being solved, and the algorithm’s
performance depends also on this selection. A number of tutorial and
reviews papers focused on hyper-heuristics can be found in the litera-
ture for the interested reader [257,259,260].

There are several lines which are currently hot research topics when
it comes to ensembles and hyper-heuristics [239,257]. First, an impor-
tant issue, currently under research in both topics, is the application
of these techniques to large-scale optimization problems. In large-scale
problems, the application of ensembles or hyper-heuristics becomes
much more involved than usual: the encoding strategy is not straight-
forward, the exploration capabilities of the algorithms become ineffi-
cient, and sometimes the computational complexity of standard ensem-
bles is too high to tackle this kind of problems. Further research is
still needed to solve these issues. Different lines are currently under
development related to intelligent encoding methods to alleviate the
high computational complexity inherent to large-scale optimization.
The second central challenge in ensemble and hyper-heuristics is the
specific selection of methods to be assembled or low-level heuristics
in the hyper-heuristic method. In many cases, it is possible to choose
among a large set of low-level methods or heuristics, but the appro-
priate selection of these composing pieces of the ensembles or hyper-
heuristic approaches remains an issue not fully solved when it comes to
real application setups. Finally, the combination of high-level with low-
level methods/heuristics is another hot topic in ensembles for optimiza-
tion, also with application in hyper-heuristics. The idea is to combine
multiple-methods approaches with multiple strategies in the high-level
algorithm, which leads to challenging problems related to the algo-
rithms tuning and the computational complexity of the final ensemble.

3.9. Memetic algorithms

Memetic Algorithms were first conceived [261] and later forged
[262] as a branch of bio-inspired computation characterizing a spe-
cific kind of hybrid evolutionary meta-heuristics. Initially defined as
modifications of Genetic Algorithms employing local search mecha-
nisms, the community was doubtful about Memetic Algorithms even
years after their advent [40]. It is important to note that at the time of
their inception, PSO, DE and other adaptations for real-valued opti-
mization problems had not been yet contributed to the community.
Memetic Algorithms were, thus, designed as an efficient workaround to
endow global search heuristics at that time (e.g. binary-coded GA) with
local search capabilities. However, many EC and SI heuristics reported

shortly thereafter have been shown to be able to perform both global
and local search provided that their search procedure is based on the
difference between any pair individuals (as in the aforementioned DE
and PSO). In the initial stages of the search process, global search is
enforced inherently due to the diversity of the population (large dif-
ferences between individuals), whereas local search is performed when
the population converges around an optimum (correspondingly, small
differences between individuals). Furthermore, other sophisticated bio-
inspired approaches have shown an ability to perform global and local
search simultaneously; this is the case of CMA-ES when configured with
a highly adaptive step size [263], or the more recent HCLPSO approach
[184], which defines two subpopulations (with parameters selected for
one to favor exploration, the other for exploitation) so that information
is exchanged only from the exploration to the exploitation subpopula-
tion. Therefore, the separation between global and local search estab-
lished in Memetic Algorithms is progressively disappearing in favor of
monolithic methods jointly comprising both functionalities.

From their advent the family of Memetic Algorithms blossomed
into a massive diffusion, being today one of the most prolific fields
within Operations Research. Nowadays, the distinguishing concept
behind Memetic Algorithms has evolved to a more generic conception
of this algorithmic branch, defined as the combination of bio-inspired
approaches for global optimization with separate local improvement
and individual learning mechanisms, possibly incorporating domain-
specific knowledge of the problem at hand.

Due to the intense activity on this specific field and with the inten-
tion of being adapted to the time’s needs, Memetic Algorithms have
been growing at a constant pace to yield complex techniques with
extremely sophisticated cooperative mechanisms. As a result of this fer-
tile activity, a fair amount of Memetic Algorithms coexists in the cur-
rent literature, which can be classified in many different and equally
appropriate ways. In our brief survey of the state of the art we embrace
the taxonomy introduced in Refs. [264,265], in which three differ-
ent chronological generations are distinguished based on their intrinsic
characteristics and communication mechanisms:

• The first generation started with the pioneering work by Moscato
and Norman mentioned above, in which the benefits of combining
population-based global optimization solvers with local search pro-
cedures were first explored. Methods framed within this first cate-
gory are characterized by the use of a single local search heuristic.

• The second generation of Memetic Algorithms delved into the
memetic transmission and design selection, with Multi-meme evo-
lutionary algorithms [266] and hyper-heuristics [267] leading the
algorithmic streamline during this period. The main difference
between these techniques and the classic MAs is the use of a group
of local search methods. On the one hand, in multi-meme meth-
ods, simple inheritance mechanisms are used for the transmission
of the memetic material (i.e. the choice of the local optimizer).
On the other hand, in hyper-heuristics, the groups of predefined
memes compete among themselves to decide which one to choose
for local refinements. This competition is based on their previous
performance by resorting to a reward mechanism. Interested read-
ers on this specific generation are referred to Ref. [268], in which an
extensive survey on Memetic Algorithms considering multiple learn-
ing methods inside an evolutionary strategy is presented.

• Finally, the search process of methods considered to compose the
third generation of Memetic Algorithms also rely on multiple local
optimizers. Additionally, memetic information is also passed on to
offspring produced by crossover operators. However, the main novel
ingredient of third-generation Memetic Algorithms with respect to
their preceding counterparts is that the mapping between the evo-
lutionary trajectory and the choice of the local optimizer is learned
from experience. Two principal trends emerge from this third cate-
gory: self-adaptive schemes [269] and co-evolving memetic methods
[270].
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A great upwelling of contributions has been lately noted in the
literature, all focused on the discovery of new synergistic memetic
approaches with biological inspiration at their core. In Ref. [271], for
example, the hybridization of a Cuckoo Search with a dynamic local
search is studied for multi-objective optimization problems. The same
design principle is observed in Ref. [272], where a recently proposed
SI approach – Brain Storm Optimization – is combined with a metric-
based clustering method, which is put to practice for optimally compos-
ing flight formations in swarms of unmanned aerial vehicles. Interesting
works are also noted at the junction between other areas of bio-inspired
optimization, such as the one in Ref. [273], where a large-scale capaci-
tated arc routing problem is tackled by using a Memetic Algorithm com-
bining decomposition strategies, co-evolution, and extended neighbor-
hood search. Another relevant study to highlight is the one introduced
in Ref. [274], where a many-objective, dynamic scheduling problem is
faced by using a proactive rescheduling Memetic Algorithm based on Q
learning. The key concept of the designed approach is to learn the most
profitable global and local search methods in an adaptive way for the
dynamically changing problem environment.

Next research waypoints to be visited in this area should include,
at first, the derivation of self-adaptive mechanisms to tune the balance
between exploration and exploitation. For any algorithm to work well
in practice, a certain balance between explorative search and exploita-
tive search is needed. Exploration enables to search a larger area in
the search space, while exploitation focuses on the local regions that
can potentially speed up the overall convergence. However, too much
exploitation and too little exploration can lead to premature conver-
gence, while too much exploration and too little exploitation can slow
down the convergence and increase the computational costs dramati-
cally. Thus, a fine balance between these two-opposing components is
needed. This is uniquely critical in bio-inspired Memetic Algorithms,
where diversification is empowered by the bio-inspired solver and
intensification is delegated on the local search method. Different mech-
anisms of collaboration between these two search procedures may ren-
der different degrees of exploration and exploitation. Without an in-
depth understanding of when this trade-off must be tuned and how it is
difficult to design algorithms that can balance these two components.
In this regard, further research is needed towards achieving new pro-
cedures for detecting and quantifying the level of stagnation, as well
as appropriate, configurable countermeasures (e.g. diversity induction)
well suited to be inserted in classical frameworks for memetic comput-
ing.

Although we foresee an exciting future for research on this topic, the
community investigating on Memetic Algorithms should avoid falling
into the temptation to hybridize the myriad of bio-inspired optimiza-
tion techniques reported to date with local solvers just for empiri-
cal serendipity. Though qualitative improvements may eventually be
obtained, the lack of mathematical rigor or argued design decisions may
hinder the discovery of memetic patterns that could bring real value to
the area. In fact, it still remains unclear how to combine components
from different algorithms to make a hybrid more computationally effi-
cient and effective for a given optimization problem. Workarounds to
this lack of knowledge take advantage of the availability of compu-
tational resources to automatically construct hybrid heuristics. This is
the case of recent studies dealing with evolutionary hyper-heuristics
deployed over large computation grids composed by volatile computing
nodes [275]. Nevertheless, a detailed analysis shedding light over this
worrying concept in Memetic Algorithms is urgently needed in order to
gain informed intuition rather than factual observations.

3.10. Large-Scale Global Optimization

Evolutionary Algorithms are a very popular tool in the field of real
coding optimization, in the industrial and scientific domain. However,
sometimes these problems require complex models with hundreds, if
not thousands, of real parameters. This high number of dimensions

greatly worsens the behavior of algorithms designed for a smaller num-
ber of variables, because the domain search increases exponentially
with the dimension (the curse of dimensionality [276]). This type of opti-
mization problems, with thousands of variables, is called Large-Scale
Global Optimization (LSGO).

Tackling LSGO as a special category within bio-inspired optimiza-
tion allows researchers to design algorithms tailored for them, as well
as to propose special benchmarks to analyze and compare their perfor-
mance. This has a special interest for different reasons. On one hand,
these benchmarks may, in some ways, reflect the characteristics of
many real problems, where the contribution of variables to the outcome
of the objective function varies greatly from one another [277,278].
On the other hand, the development of algorithms that can efficiently
explore these large search spaces allows for more efficient optimization
algorithms, if not more scalable with respect to the size of the problem.
Indeed, this is an increasingly valued feature given the growing trend
of processing large volumes of data and variables.

The community working on this particular computation paradigm
has united regularly in special sessions co-located in renowned con-
ferences since the first was held in 2008 [279,280]. In 2010 another
special benchmark was proposed [281]. In 2011, there was a special
issue in Soft Computing journal with another benchmark [282]. Later,
in 2013 another benchmark for LSGO was proposed in Ref. [277],
which was specially designed by combining functions with different lev-
els of separability and dependency between the variables. Since 2013,
many competitions have been held where these same benchmarks have
been maintained. Furthermore, many research works have used them to
develop their own proposals. As evinced by Fig. 2 (stacked bar colored
in ), the evolution of LSGO in last years shows a rising trend in number
of contributions, with no clear predominance of EC or SI approaches.
All in all, achievements as the ones outlined in what follows are symp-
tomatic of the momentum of this subarea, with biological inspiration
taking a leading role in recent contributions [20].

In fact, research in LSGO not only has allowed to design evolu-
tionary algorithms, but also to develop further other research lines
closely linked to the computational problems derived from large prob-
lem scales. First and more evident, LSGO has catalyzed the design of
parallel and distributed algorithms to reduce the high processing time
needed for efficiently addressing large-scale problem instances. This
crossroad between areas has already been noted in the previous sub-
section.

An interesting research line triggering many contributed schemes in
the last years is to use the aforementioned benchmarks to develop new
techniques that automatically infer relationships among variables. This
inference permits to identify groups of variables that could be opti-
mized in isolation with the minimum loss of efficiency. In combina-
tion with a CC, this approach can be very effective, because grouping
variables allows the algorithm to optimize a lower number of vari-
ables. These grouping variables techniques are in essence decompo-
sition methods based on a divide-and-conquer strategy, which allows
decomposing large-scale problems into multiple low-dimensional sub-
components that can later be optimized by one or several algorithms
capable, in most cases, of running in parallel. This decomposition is
crucial to obtain good results [283,284]. The most straightforward
approaches in this regard are random [215] or dynamic grouping (i.e.
changing it during the run) [285]. Later, the work in Ref. [286] pro-
posed to adapt the subcomponents size based on the historical per-
formance. More advanced techniques strive to detect the interaction
between variables to group together those with more interactions,
because they can significant improve the results [287]. An example of
this strategy is the delta grouping approach proposed in Ref. [288].
Delta grouping tries to identify interactions between variables by mea-
suring the differences in fitness when the variable values change in iso-
lation and when they are simultaneously changed. More recently, the
same authors proposed an improved delta grouping scheme in which
the number of evaluations required is halved, furthermore exhibiting a
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more robust behavior than its previous counterpart [284]. We refer to
Ref. [289] for a more detailed description of the evolution of the LSGO
area.

Anyway, even considering the improvement in computational per-
formance yielded by these grouping methods, such gains obtained by
the decomposition usually do not compensate for the cost in terms
of evaluations required for detecting variable dependencies. Thus, last
proposals try to reduce this high cost in evaluations. A significant new
approach in this direction is to apply the decomposition in a recur-
sive way, like in Ref. [290]. Definitely there is a research niche in this
noted drawback of current grouping LSGO techniques, because when
the reduction in complexity could compensate the additional evalua-
tions in the process, it could be applied in all types of problems, not
only large-scale problems. Even more, their application to many real-
world problems is also expected, because these problems could encom-
pass variables with many and few relationships with others, thus the
optimization process with one grouping mechanism could be improved
significantly.

Since these grouping techniques are very costly in evaluations, and
they are not useful for function with overriding [287], currently they
cannot be considered competitive enough in comparison with algo-
rithms specially designed for LSGO, thus the develop of algorithms spe-
cially designed for them is still a very interesting and open research line.
Among these techniques, Multiple Offspring Sampling (MOS, [291]) has
been considered the state of the art during many years, because since its
first appearance in the LSGO panorama [292] it has not been improved
significantly. MOS is an algorithm that combines several generic opti-
mization algorithms and more specific solvers for LSGO, such as local
search methods that are applied to the same population in rounds with
an adaptive mechanism that decides which algorithm should be applied
in each round, considering the historical performance of previous appli-
cations of every algorithm. Very recently, another proposed algorithm,
SHADEILS [293], surpassed results obtained by MOS (specially in more
complex functions), becoming the new state of the art in LSGO sup-
ported by the results attained by this algorithm in the latest CEC’2018
competition [294]. SHADEILS is a memetic algorithm that combines an
advanced version of DE with two local search methods and an adaptive
mechanism to decide which one of the local search should be applied in
each round (DE is always applied). As in other recent references [295],
we observe that DE has lately prevailed as the most utilized bio-inspired
search algorithm in LSGO optimization. However, additional character-
istics of recent proposals like the memetic computing strategy followed
in SHADEILS suggest that there is still room for more efficient LSGO
algorithms.

To summarize, in a future we expect that new grouping variable
techniques could reduce the cost of evaluations to the point of compen-
sating for the use of such techniques rather than optimizing all vari-
ables together. Another promising field is to improve existing specially-
designed algorithms. A third promising research line is to replace the
algorithms usually used in CC, usually classical algorithms, with spe-
cific algorithms for LSGO, to avoid the possible limitations that could
prevent these algorithms from reaching their full potential.

3.11. Parameter tuning

The majority of bio-inspired optimization methods are very flexible
algorithms, with many parameters driving their search behavior. Thus,
assigning proper values to these parameters is crucial for obtaining the
best possible results for a given problem. This selection can be theoreti-
cal to meet some desired properties of the algorithm itself (as occurs in
the design of CMA-ES [8]). More usually, parameters are rather set in
an experimental way by e.g. using a value grid or, less regularly, by mir-
roring parameter settings used in similar studies to the proposed one.
Unfortunately, it is often the case that bio-inspired algorithms have too
many parameters, so that seeking the best value for each one of them
can be regarded as another optimization problem by itself [296]. This

problem, namely, to decide the best parameter values for the algorithm,
is referred to as tuning or off-line tuning (because a decision is made on
the parameter values before running the algorithm).

When a new bio-inspired algorithm is proposed within the commu-
nity, the values of its parameters should be tailored in regards to the
experimental setup under choice, for which a small study of parame-
ter sensitivity is usually carried out aside. Depending on the number
of parameters and their explored range of values, the search space
can become computationally unaffordable even for very coarse value
grids. One of the most important decision is to decide which parameters
should be tuned, or fixed assigned based on the intuition or convention,
as the recommended values by other researchers or authors of the orig-
inal algorithm. When searching for the best performing parameter set
over value grids recommended by other authors [297,298], the expen-
sive cost of tuning usually restricts the number of selected parameters.
Moreover, in some complex problems, it is not unusual to spend time
and efforts executing the algorithm with many different combination of
parameters, obtaining that only a few of them have a strong influence
over the results. Therefore, many combinations can be avoided, reduc-
ing the overall computation time. A parametric sensitivity analysis, or
robustness studies, can be very useful to identify the relevant parame-
ters to tune (and hence conventional values are used for the remaining
ones).

Another important question is if the improvement yielded by param-
eter tuning deserves the computational cost required by this process.
The answer depends strongly on each particular case, but in general, it
is worthwhile when real-world problems must be optimized many dif-
ferent times, or when small objective improvements due to parameter
tuning can yield significant gains in some practical aspect, e.g., lower
economic costs associated to the solution. When tuning is demanding in
terms of computational burden, a very popular option is to delegate the
process to tool as REVAC [299] or I-RACE [300], capable of automating
the parameter tuning process. Among them I-RACE has lately become
one of the most widely adopted schemes. I-RACE is a freely available
software that uses racing tuning [296] to allow researchers to easily
adjust the values of the parameters of an algorithm over a specific
group of functions. The mechanism of I-RACE is simple: from an exe-
cutable algorithm and a list of parameters (indicating, for each one,
the type and range of possible values), the software samples a distri-
bution for each parameter to be tuned, and updates it with the best
configurations (as per a racing mechanism) to bias subsequent sampling
stages towards parameter values in the best configurations found so far.
After several sampling iterations, the best configuration is returned. In
this way, although tuning still remains costly in terms of time process-
ing, researchers are alleviated from time-consuming parameter tuning
phases.

When a research work proposing a new optimization algorithm
reports a benchmark with other solvers from the state of the art, it
is often the case that parameter values are carefully tuned for the pro-
posed approach. However, for the rest of algorithms the values pro-
posed by their authors in related contributions are instead adopted,
under the assumption that their optimality also holds for the problem
under consideration. In some cases these adopted values were obtained
under experimental conditions (e.g. dimensionality, range, or evalua-
tion limits) that could strongly differ from the problem(s) considered
in the benchmark at hand. In these cases, when the experimental con-
ditions are very different and/or the proposal is tuned more exhaus-
tively than its counterparts, a similar parameter tuning process should
be done with each of the reference approaches in the benchmark to
ensure fairness in the comparison [301]. In Ref. [298] extensive com-
parisons were carried out with competitive algorithms with and with-
out automatic tuning. As a conclusion, results were shown to greatly
differ based on whether default values or the tuned parameters were
used, remarking the importance of a good parameter tuning (whenever
it is practically feasible and affordable) in new bio-inspired algorithm
proposals to come.
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3.12. Parameter adaptation

To overcome the problem of setting parameter values, an uprising
trend is to use adaptive or self-adaptive parameters. On one hand, adap-
tive parameters are changed during the run by means of an adaptation
strategy that is set before the algorithm is actually executed. On the
other hand, self-adaptive parameters are parameters whose values are
evolved at run-time along with decision variables according to the inter-
mediate results obtained by the algorithm during its search [302]. This
could be online tuning, because the results obtained during the run are
used as feedback to adapt current parameters values. These two tech-
niques can be combined based on the parameter type. We consider that
these adaptation mechanisms, with may also hinge on the use of ensem-
bles or hyper-heuristics (already introduced in Section 3.8), constitute
a promising research topic within bio-inspired optimization.

A current tendency in this context is to use self-adaptation mech-
anisms for very sensible parameters that have a strong influence on
the results. Not only it reduces the parameters to tune (making the
algorithm simpler to use on new problems), but it can also yield great
improvements. For instance, the most successful proposals in the family
of DE-based heuristics during the last few years hinge on the adaptation
of the main parameters of this bio-inspired solver, namely, the F (dif-
ferential weight) and CR (crossover probability) parameters [303].

One of the most difficult parameters to adapt in a bio-inspired solver
is the population size. Although it is usual to resort to the same pop-
ulation size than in previous related works, this is a parameter with a
strong influence on the trade-off between exploration and exploitation.
An encouraging approach is to use an adaptive or dynamic population
size: while it is well-known that a higher population size is useful for
maintaining diversity in the first stages of the search process, in the
last stages it is more important to foster exploitation around the best
individuals within the population. Thus, enforcing a higher population
size at the beginning of the search and including a reduction mecha-
nism (in combination with elitism) could improve the performance of
algorithms. This is a simple strategy that can render very good results
[304,305]. Also, there are additional factors that could affect the pop-
ulation size, like to use a survey parameter related to each individ-
ual (reducing the lifetime for worse solutions), varying the population
based on the fitness of its individuals (like [306]), or incest prevention
mechanisms. Also, sometimes the population size is affected when a
restart is done in the algorithm [8], or even several populations with
different sizes are simultaneously used [307]. In fact, there are stud-
ies like the one in Ref. [308] that analyze in depth different criteria
for the population size, concluding that the proper value of this param-
eter depends on the problem itself. To date, self-adaptive population
size mechanisms is an open issue, with interesting modern contribu-
tions being contributed regularly in the community (see Ref. [309] for
a comparison among different adaptive population size strategies).

Other parameters that possess a great influence over the search are
those controlling the variation operators (like crossover or mutation)
used to generate the new solutions. For long time ago it has been pro-
posed to increase the diversity between parents and offspring when the
population converges to compensate for the lack of diversity [310].
There are many proposals in GA to encourage diversity, such as an
adaptive mutation [311] or and adaptation of the selection mecha-
nism to recombine the most dissimilar individuals. As for DE, most
of the contributions dealing with this heuristic propose to adapt the
CR and F parameters that balance the difference between a newly pro-
duced solution and its reference solutions (encouraged by the improve-
ment obtained). In the majority of cases the values are not fixed, but
change from solution to solution by sampling a distribution with a cen-
tral value. This central value is adapted based on successful solutions,
considering as such those that are introduced into the population. First
DE versions harnessing this design principle, like SaDE [312] or JADE
[313], used only a mean value for each parameter, which is adapted
along the run. However, in order to obtain a higher level of robustness,

alternative versions like SHADE use a memory of several F and CR mean
values; in that way, the search can be done by alternating among dif-
ferent mean values. Another recent trend is to consider not only the
best solution to guide the search, but a group of the best p solutions
(selected one random for each solution), and adapt that parameter p
during the search by 1) using a reducing value to increase diversity at
initial stages, and 2) centering the search around most promising solu-
tions in later stages. All these techniques are complementary, and in
many algorithms they are used in combination.

In memetic algorithms or in co-evolutionary algorithms, in which
several algorithms are used in combination, there are also parame-
ters that control how these algorithms interact with each other. The
self-adaptation of these parameters makes it possible to enforce the
application to each algorithm based on the improvement achieved by
each one, using one reinforcement learning technique [314]. The most
widespread method is to select one algorithm based on a probability,
which is periodically updated as a function of the relative improvement
obtained by each component. This model has been used to select the
local search method [315], or to choose the mutation operator [312].
This model has been proven to be specially good in complex search
spaces. For instead, proposals like [291] or [242] combine different
classic algorithms and some specific local search methods, obtaining
very competitive results that clearly surpass those obtained by each of
its components. The excellent survey in Ref. [316] describes in depth
different parameter control strategies reported in recent times.

To summarize, although the adaptation of parameters has been an
active research line for years, the good results obtained by recent pro-
posals have revived the interest in these techniques. Not only they can
result in the best performance, but they also allow algorithms to bet-
ter perform over a wider range of problems and, consequently, get
closer to the fundamental goal pursued in meta-heuristic optimization.
Additionally, making a parameter self-adaptive reduces tuning prob-
lems exposed in the previous section, and yields a more readily useable
search algorithm to solve real-world problems.

3.13. Benchmarks and comparison methodologies

In order to assess the convenience of a new bio-inspired algorithm,
researchers must properly gauge its performance over one or several
optimization problems, and compare it with other algorithms in the
literature. To this end, traditionally researchers proposing a new bio-
inspired algorithm selected a group of theoretical functions to use,
and the experimental conditions under which the algorithm(s) would
be tested. This, however, produced an important disadvantage: results
from different papers could not be compared to each other because
they considered different functions and/or experimental conditions.
Indeed, authors should compare the results of their proposed solvers
to those obtained by other reference algorithms in the literature, over
the same set of problems and under the same experimental conditions.
This approach, however, posed several main drawbacks:

• In strong connection to the structural bias that has been identi-
fied in certain heuristics (see Subsection 3.1), problems could have
also properties that might favor some algorithms over others. For
instance, in many problems, the optimum is at the center of the
domain search, favoring algorithms prone to explore this area of the
search space.

• It is difficult to decide which algorithms to compare with, as it is
hard to identify the current state-of-the-art algorithms.

• While the parameter values set for the newly proposed bio-inspired
algorithm are rather adequate for the experimental problem, the
reference algorithms are configured with the parameter values
retrieved from the papers were such algorithms were originally pre-
sented (and thus, recommended by their authors). Although this is a
widespread practice, it is usually very unfair because the parameter
values recommended by the authors might be suitable for the origi-
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nal experiments, but not for eventually new fitness functions and/or
experimental conditions used in the paper of the new proposed
solver. For the sake of fair comparisons, all parameter values should
be automatically tuned for the new benchmark (see Section 3.11);
otherwise, strongly impairing non-tuned algorithms could mislead
the conclusions drawn from the benchmark, as was shown in Ref.
[298].

In order to overcome the above disadvantages, in the last years the
community has embraced the use of standard test suites or benchmarks.
These benchmarks define a group of functions to optimize, including all
their related experimental conditions, so that the authors can compare
directly the obtained results for their proposed solver. There are many
benchmarks available in the literature, most of them proposed by orga-
nizers of specific special sessions and competitions in conferences from
the field. Such benchmarks have also been widely adopted in other fora
(e.g. journal papers) as standard benchmarks. Thus, these benchmarks
not only allow researchers to compare directly their results, but also
give a ranking of the best algorithms for the benchmark (ranking that
can be completed by the proposals published in journals). This makes
it very easy to identify the current state-of-the-art for any given bench-
mark, thereby becoming a clear reference algorithm for comparing opti-
mization techniques proposed in the future [317].

Unfortunately, more than ten years after the first benchmarks too
many proposals are still published without a right comparison method-
ology, mainly because the proposals were not compared against the
considered state-of-the-art algorithms in many proposals in the litera-
ture. Authors of many contributions do not compare with algorithms
identified as the state-of-art, but most worryingly: they limit their
benchmark to classic algorithms (such as off-the-shelf versions of PSO
or DE) proposed more than twenty years ago. Such deceptive works
thus ignore a whole series of variants that have been proposed over the
years, and that have been found to be much more competitive than their
original counterparts and variants of other bio-inspired algorithms. In
Ref. [318] reference algorithms selected in new proposals published in
well-known and recognised journals were analyzed, concluding that in
the majority of cases, such reference algorithms did not perform com-
petitively enough to be selected as such.

We must also pay special attention to the huge number of new
bio-inspired proposals contributed in last years [319]. The previous
lack of right comparative against competitive and modern algorithms
is specially relevant for these new proposals. In many times they are
very innovative in its biological inspiration, and so is it remarked in
their description and terminology. However, it is mostly the case that
similarities with respect to previous algorithms are not highlighted –
even not acknowledged at all. Furthermore, no proper performance
comparison is done with state-of-the-art variants of currently available
heuristics. When addressing real-world optimization problems, achiev-
ing competitive results and a good searching behavior are the most
important factors, not the originality of their source of inspiration [2].
Thus, when new bio-inspired algorithms are introduced, the proposing
authors should incorporate experiments by using any of the proposed
benchmarks, and thereby check competition websites to find state-of-
the-art algorithms to use them as a baseline in their selected bench-
marks. Responsible research when proposing new bio-inspired opti-
mization methods should be also enforced by reviewers and other stake-
holders along the editorial workflow, ensuring that quantitative, statis-
tically reliable evidences of the claims held in upcoming publications
are provided by the authors.

In this context we summarize in Table 1 the main proposed bench-
marks in the literature related to different type of optimization prob-
lems, remarking some of their characteristics. For all these benchmarks:

• A group of optimization functions is considered, with different levels
of difficulty.

• A measure of error is computed for each function.
• A different number of dimensions is considered for each function.
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• Each algorithm is run several times (usually no less than 25) for
each function and dimension. The more times the algorithm is exe-
cuted, the better the statistical characterization of the algorithm’s
performance will be.

• A stopping criterion is set, which can be either a maximum num-
ber of function evaluations, that linearly depends on the dimension
value, or a required accuracy level, so that the performance of each
algorithm is given by the number of evaluations needed to achieve
it.

• A criterion is defined to rank the algorithms. In multimodal opti-
mization, the measure to optimize is the ratio of local optima found
by the algorithm at hand; in multi- and many-objective there are
specific measures related to the Pareto optimality and diversity;
in real optimization the criterion relies in a weighted global rank-
ing measure, granting more importance to the results obtained for
more difficult functions (higher dimensions). This primary ranking
criterion is complemented by a feasibility rate should the problem
include constraints in its definition.

We refer to Ref. [317] for further information about optimization
benchmarks and its evolution and winners through the years of com-
petitions.

Specifically for continuous (real-valued) optimization two different
benchmarks have evolved along the years: 1) benchmarks proposed
within the IEEE Congress on Evolutionary Computation (CEC), and 2)
the Black-Box Competition within the Genetic and Evolutionary Compu-
tation (GECCO) conference, with an increasing difficulty of the majority
of functions. They also differ in the criterion adopted to compare algo-
rithms: in CEC competitions the maximum number of evaluations is
fixed, and the error is used to compare the algorithms (fixed cost). By
contrast, in BBOB competitions the expected accuracy is indicated, and
the algorithms are compared by considering the number of evaluations
needed by a competing algorithm to achieve a given level of precision
(correspondingly, fixed target). Lately expensive optimization benchmarks
have been also proposed in which the number of evaluations is signifi-
cantly reduced to target algorithms suited for realistic situations where
function evaluations could be very costly in time (e.g. function evalua-
tions provided by computationally intensive simulations).

The criterion used to measure the performance of each benchmark
strongly depends on the area. In real-parameter optimization, the aver-
age error or the average number of evaluations is obtained, and in
multimodal-optimization is used the ratio of found optima. For multi-
and many-objective problems, there are special measures for the Pareto
front. The benchmarks, to compare algorithms, usually only the average
measure (and occasionally the median, because average is very sensi-
ble to data) is used to compare algorithms, remarking which algorithm
obtain best results by each function. Since in some cases highlighting
which algorithm is better in each functions is not informative enough,
it is very common to calculate the average ranking in order to sort all
algorithms as per a single global ranking. Recently, rankings are trans-
formed into a certain number of points (more points to better ones),
combining the total ranking for each dimension when there are sev-
eral dimension values (giving more importance to results with greater
dimension value, because the difficulty increases with the dimension).
This is actually mainly used for the organizers of competitions rather
than in comparisons made in research papers. We believe that this com-
parison methodology could be more widely adopted in the future, not
only for competitions and other workshops alike.

Nowadays, in order to compare several algorithms it is crucial to
ensure that improvement in results are not due to stochastic differences
in runs. Thus, it is mandatory to apply statistical tests to clarify the sta-
tistical significance of the performance gaps found among algorithms
[343]. However, the majority of benchmarks in Table 1 do not con-
sider the application of statistical testing, neither in their experimen-
tal setting (the number of runs is lower than those recommended for
them), nor in the comparison criterion established by the organizers.

About statistical testing, it has been proven that required assumptions
were not fulfilled in some benchmarks [344], so in general these sta-
tistical tests are not recommended. Non-parametric tests can be used
instead which, despite less powerful, do not require any assumption
to be met by the sample beforehand. Among them, the most popular
is arguably the Wilcoxon test, that allow comparing results achieved
by two algorithms. Since in these non-parametric tests the expected
error increase with each one-by-one comparison, for multiple compar-
isons post-hoc tests such as Holm/Hochberg/Hommel (they are very
similar to each other) are rather adopted to maintain the expected
error controlled. A prescription of good practices on statistical tests
for comparison among EC and SI algorithms can be found in Refs.
[345,346]. Recently, new trends in the field of statistical comparison of
algorithms indicate that Bayesian tests, which provides a distribution
over the parameter of interest, are a promising approach in this regard.
The meaning of p-value in null hypothesis statistical tests (parametric
and non-parametric) is usually misinterpreted, as if it were the prob-
ability of not complying with the null hypothesis. Bayesian tests actu-
ally return the probability distribution of the null hypothesis. There-
fore, while in the hypothesis statistical tests when null hypothesis is
not rejected there is no information at all, Bayesian tests provide use-
ful information. In addition, they offer more robust results, as they
are not as influenced by the number of observations as the previous
ones [347].

There is an open challenge that has become increasingly entangled
through the years [317]. In theory these benchmarks should serve to
identify which bio-inspired algorithms offer the most promising behav-
ior when optimizing different problems. Their ultimate goal should be
to dictate which algorithms to apply to a new real-world problem,
choosing from the most promising alternatives tested in functions and
problems similar (or at least, related) to the problem at hand. How-
ever, over the last decade benchmarks have undergone a sharp evo-
lution mainly in terms of an increasing level of difficulty, reaching
a situation where it is possible that the functions included in these
benchmarks are overly complex when compared to real-world prob-
lems. Thus, an unsolved issue for benchmarks is to bridge the compu-
tational gap between part of their constituent functions and the charac-
teristics of real-world problems, towards improving the relevance and
practicality of these artificially-constructed benchmarks.

Another important disadvantage in these benchmarks is that the
used stopping criterion is not realistic. In real-world problems it is
not only interesting to discern which algorithm performs best with
a fixed and non-realistic number of evaluations, but it is also rele-
vant to assess which algorithm attains an acceptable error within the
minimum time/number of evaluations. Thus, benchmarks measuring
the evaluations to achieve a certain accuracy are more realistic, when
the expected accuracy is adequate. In general the scalability of algo-
rithms does not receive enough attention in the competition bench-
marks. Moreover, a minority of contributions has studied how evalua-
tion numbers influence the convenience of one type of algorithm over
another. In Ref. [348] it is observed that for a low number of evalua-
tions, mathematical methods could be better suited than evolutionary
algorithms. However, extensive competitions have shown also that for a
reduced number of evaluations, specifically designed evolutionary algo-
rithms are also a good option. This conclusion goes in line with recent
studies about how bio-inspired optimization algorithms perform over
budget-limited problem instances with respect to deterministic global
optimization methods [349]. In Ref. [350] the performance of many
algorithms is studied, concluding that PSO algorithms are more ade-
quate for a low number of evaluations, while DE algorithms can obtain
more precise results but they often require a higher number of eval-
uations. These type of studies are very useful and practical, yet lack-
ing in the current literature. This promising research line could reduce
the gaps between theoretical benchmarks and the applicability of bio-
inspired heuristics to real setups.
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To summarize, even while the proposal and use of benchmarks have
become a de-facto standard in almost all areas of bio-inspired opti-
mization, there is still room for improvement and open issues to be
addressed, such as new benchmarks with reduced gap among them and
real-world problems [351], and new and better comparison methodolo-
gies, including more attention to scalability and new statistical testing
approaches such as the use of Bayesian tests.

3.14. Applications of bio-inspired optimization

Bio-inspired algorithms and methods have been successfully applied
into a wide variety of domains [30]. A comprehensive and detailed
analysis of the current applications based on bio-inspired methods is
outside the scope of this article. However, it is interesting to delve into
some highly relevant areas of applications, such as social data analysis,
medicine and health, cybersecurity, or video games (among many oth-
ers), where these methods have been profusely utilized in recent times.
Next we provide a short description of these selected application areas,
along with a brief digest of the activity therein related to bio-inspired
methods:

• Social Network Analysis (SNA), which comprises topics such as social-
based applications for data mining, data analysis, community detec-
tion or social mining, has received an increasing attention from the
research community. The main goal targeted in SNA is to identify
structures and patterns in social-based information sources [352].
This area is inherently interdisciplinary, and covers areas such as
data mining, machine learning, statistics, complex systems, graph
theory, information retrieval, natural language processing, seman-
tic web, and big data computing, among others. When it comes
to bio-inspired algorithms and SNA, several EA and SI approaches
have been utilized over single- and multi-objective problems mod-
eled over social network structures [353,354]. Bio-inspired meth-
ods have been used to guide the search process for inner struc-
tures, such as clusters or communities, towards finding the most
representative nodes (e.g. authorities) in the network [355], analyz-
ing and optimizing the diffusion of information throughout the net-
work [356], isolating the so-called ego network of selected central
nodes [357], or studying the dynamics of a network when modeling
a non-stationary information source [358]. Besides general studies
reported on generic graph structures, many practical applications
can harness the insights provided by bio-inspired optimization tech-
niques, such as e-health [359], smart cities [360] or energy trans-
mission networks [361]. An exhaustive survey of evolutionary algo-
rithms for community detection in networks has been recently pre-
sented in Ref. [362].

• Medicine and health systems have benefited from Artificial Intelli-
gence methods since the advent of this research field, as exposed
by the development of the first expert systems for disease diag-
nosis. The increasingly complex challenges faced by medical and
health systems in the last years have grown the need for new deci-
sion support systems aimed to help health experts improve the
diagnosis accuracy. Several recent approaches have elucidated that
bio-inspired optimization techniques can play a crucial role in this
regard. For instance, in Ref. [363] a technique based on the Artificial
Bee Colony (ABC) algorithm is proposed to efficiently determine the
IIR filter coefficients capable of eliminating Doppler noise present
in the aortic valve. In Ref. [364], an enhanced version of the afore-
mentioned ABC solver is proposed to diagnose breast cancer: it is
used to automatically detect the breast border and nipple position,
so that the suspicious regions are identified using bilateral subtrac-
tion. In Ref. [365] an improved ACO algorithm is used to segment
MRI brain images, which is indeed a particularly prevailing medi-
cal application addressed by the bio-inspired optimization commu-
nity (see e.g. Refs. [366,367] and references thereafter). Likewise,
in Ref. [368] a novel method relying on adaptive bio-inspired algo-

rithms – namely, ACO, Bee Colonies Optimization (BCO) and GA –
is introduced for selecting features extracted from a mammogram
image. Several other approaches hybridize PSO with other meth-
ods so as to improve the current state of the art of several med-
ical problems. In Ref. [369], for instance, a technique using finite-
difference frequency domain is hybridized with PSO for reconstruct-
ing cell dimension in breast cancer and to find its position using 2-
D and 3-D breast models. In Ref. [370], a method for segmenting
breast tumor images using modified automatic seeded region grow-
ing based on PSO-based image clustering is proposed. The hybrid
approach in Ref. [371] combines together SI and neural networks
for the detection and classification of micro calcifications in mam-
mogram images. Finally, modern bio-inspired approaches are lately
entering the health arena, such as [372] which resorts to the Firefly
Algorithm for breast cancer classification, or [373], where the Bat
Algorithm is used to isolate skin lesions in medical images. Com-
pendiums on the applications of bio-inspired methods to medicine
and health can be accessed in Refs. [374–376].

• Cybersecurity, which recurrently informed security breach incidents
have spurred on the interest in methods aimed to increase the
resilience of computer systems and processes. This field currently
spreads beyond local security threats such as virus detection and
intrusion detection to also consider more elaborated, global phe-
nomena such as cyberterrorism [377] or cybercrime [378]. What-
ever the threat may be, bio-inspired methods have been lately
applied to improve the overall response and resiliency of computer-
based systems, thereby facing with success common computer
attacks such as phishing [379], eavesdropping [380], Denial-of-
Service or spoofing [381]. Closely related to these exemplified cases,
the automatic detection of malware has also leveraged the applica-
tion of bio-inspired algorithms in recent contributions. For instance,
in Ref. [382] a hybrid method encompassing an adaptive neuro
fuzzy inference system and PSO is proposed to find the optimum
parameters that can be used to facilitate mobile malware identifi-
cation. The work presented in Ref. [383] reports the development
of an innovative active security system that acts as an extension on
the ART (Android Run Time) Virtual Machine architecture, and uses
a Biogeography-Based bio-inspired solver for training a Multi-Layer
Perceptron that classifies Java classes of a software application as
benign or malicious. Finally, in Ref. [384], a novel method that
employs Deep Learning models to improve the detection of malware
is proposed. In this approach a Bat Algorithm addresses the prob-
lem of class imbalance among different malware families, which is
a frequent problem in data-based studies related to cybersecurity.
We refer to Refs. [385–389] for baseline material about the past
history of bio-inspired computation applied to problems related to
cybersecurity, as well as a prospect of the research directions in this
matter.

• Video games have massively embraced Artificial Intelligence in a
large number of problems and challenges, such as Procedural Con-
tent Generation (PCG), bots generation or the development of vir-
tual players [390]. To begin with, the automated creation of con-
tent for video games via PCG techniques [391] is a critical aspect.
The industrial benefits, economically speaking, are clear: PCG can
reduce development costs and enlarge the life of commercial video
games (with the corresponding earnings increase). For this reason,
most PCG methods are focused on the generation of a specific type
of contents (e.g. maps o non-player characters strategies). Differ-
ent approaches, such as co-evolutionary competitive bio-inspired
algorithms, have been proposed to generate simultaneously two
different kind of contents, namely maps and game AI [392]. The
development of game bots that can dynamically adapt to different
difficulty levels as well as variable game environments is another
research line with AI methods at its core. An example is [393],
which focuses on developing a generic framework, called AntBot,
that builds on SI methods (in particular, ACO heuristics), to imple-
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ment real-time gaming bots for dynamic game environments. In Ref.
[394], the performance of ACO and GA was assessed when deal-
ing with graph-constrained models in video games problems. In Ref.
[395], a naive PSO solver was shown to automatically create com-
plex two-dimensional graphic characters by evolving modifications
made to a base character. Overviews on the applicability of bio-
inspired optimization to games have been published during the last
decade [396,397], but new paradigms such as serious games have
lately rekindled the interest in this topic and enlarged its applica-
tion scope far beyond leisure (see e.g. Ref. [398] for rehabilitation
robotics).

The above list of selected topics must be regarded as an exemplifying
excerpt of the plethora of applications where bio-inspired optimization
is becoming a relevant technological enabler. Many other fields such
as intelligent transportation systems [399–401], automated manufac-
turing [402–405] or energy systems and smart grids [406–409] have
also been bolstered by bio-inspired optimization methods. In all these
sectors we discriminate several challenges related to the practicality of
bio-inspired solvers when deployed in real problem setups. First, real-
world scenarios are often subject to constraints that must be modeled
and included in the mathematical problem statement but, most impor-
tantly, considered by the optimization algorithm during its search pro-
cess. When this is the case, many strategies to handle different types
of constraints have been reported by the community [235,410–412].
However, there is no clear consensus about how to deal with practi-
cal problems that undergo a high number of restrictions. When this is
the case, it might not be of practical value to face it as an optimization
problem, but rather as a constraint satisfaction problem [413,414]. Dif-
ferent design patterns can be followed depending on how the problem is
modeled, but it is the added value to the application what should drive
the decision whether to opt for one modeling approach or the other.
Just finding a solution satisfying all imposed constraints is enough in
many practical cases. From a research perspective, the community lacks
a formal, methodological study on the conditions that should be met
to select a good modeling approach for a practical optimization prob-
lem, capable of realistically reflecting its particularities and constraints
(such as latency, complexity or scalability), yet properly balancing the
cost per value of the solver designed to solve it efficiently.

Aligned with the above objective, the expert knowledge accumu-
lated by users of the system to be optimized along years of operation is
a very valuable source of inspiration for the design of efficient ad-hoc
heuristics [415]. In a sense, it can be regarded as the byproduct of an
adaptation of a learning machine (the human) to a problem as a result
of a series of repeated trial-and-measure iterations over time. Unfortu-
nately, expert knowledge is often overseen in practice; meta-heuristic
algorithms are instead preferred to expedite the achievement of good
solutions at the cost of a slower convergence or a lower optimality. In
problems of increasing complexity and/or when convergence speed is a
critical design factor, expert knowledge should be exploited during the
search process by including specialized operators that model the solving
patterns followed traditionally in the scenario at hand. In most practi-
cal situations information revealed by experts can yield better search
operators or higher convergence rates; in short, a better overall search
performance than those of the most sophisticated bio-inspired optimiza-
tion method.

4. Bio-inspired computation: a curly road ahead

In the previous section we have identified possible research paths
to follow in important research areas within bio-inspired computation.
Unfortunately, the field still undergoes general issues that threaten to
jeopardize true advances in years to come. A synergistic push from the
community should be made towards addressing these issues for the ben-
efit of Science. We herein provide some thoughts so as to constructively
foster research efforts in such directions:

4.1. More is not always better

The first big issue within bio-inspired computation is to decide
whether we need to improve methods discovered so far by the com-
munity, or instead look for new biological sources of inspiration to con-
ceive new algorithmic developments. The recently witnessed contro-
versy around metaphor-based approaches has not achieved any com-
mon grounds in regards to the strategy that the community should
embrace in regards to this field, nor has it stopped the emergence of
more and more optimization techniques relying on allegedly innova-
tive bio-inspired methods [416]. It is sadly concerning that part of
this literature outbreak is motivated by a lack of perspective about
the real needs of the field. However, without a consensus on how new
algorithms should be evaluated both theoretically (novelty, properties)
and empirically (comparison methodologies, benchmark problems), it
is absolutely unfeasible to separate the wheat from the chaff . We herein
advocate for starting over a clean sheet in the field, and thus focus on
the fundamental paradigms that underlay bio-inspired computation as
a whole, so that new advances to come will help clear up controversial
questions within the community.

4.2. Towards a unified notation and description of bio-inspired algorithms

Closely related to the above, much has been discussed around the
analogy between old and new bio-inspired heuristics, specially within
SI. Notable are the cases of Harmony Search and Evolution Strategies
[417,418]; Particle Swarm Optimization and Firefly Algorithm [419];
and Ant Colony Optimization [420] and Intelligent Water Drops [421].
In most cases disagreements could have been avoided by unifying the
semantics by which bio-inspired heuristics are described, so that their
novel ingredients can be put on relevance in a more cohesive manner.
As a matter of fact, the myriad of new bio-inspired algorithms that are
reported on a regular basis justifies by itself the adoption of a standard
notation focused on the domain-agnostic description of new algorithmic
operators and design patterns of heuristics and meta-heuristics. Such a
standardized, metaphor-free vocabulary would prevent the community
from obscure mathematical formulae widely employed nowadays to
obfuscate the real mechanisms of newly proposed methods. By virtue of
this metaphor-free description, for instance, a candidate solution would
be identified explicitly as such and not as e.g. an egg, a water drop
or a bee’s nest. This need for notational uniqueness was highlighted
recently in Ref. [422], where metaphorical aspects characterizing dif-
ferent honey bee inspired solvers were decoded to standardized opti-
mization terms. Other benefits would stem from this standardization
process beyond the assessment of differences and similarity between
bio-inspired solvers, such as a higher modularity and reusability of
heuristic components, a better detection of possible sources of unnec-
essary algorithmic complexity, and a more straightforward and reliable
reproducibility of results. Even though a manifesto for transparency
through descriptive standardization was already published years ago
[423], no significant steps have been taken ever since in this direction,
despite the significant impact any minor advance could incur in the
field.

4.3. New theoretical directions to better understand bio-inspired algorithms

Different empirical observations and numerical simulations have
elucidated that bio-inspired algorithms can work surprisingly well in
practice, but in most cases we rarely understand why they work under
the given conditions for a given type of problem [424,425]. Though
there are some progress in theoretical analysis as we have seen earlier,
it is highly needed to use more systematic approaches – ideally, a uni-
fied framework – to analyze bio-inspired algorithms so as to gain math-
ematical insight into their working mechanisms, to estimate their rates
of convergence and assess their conditions for stability. In this regard,
fresh theoretical studies lately proposed within the community seem to
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be promising for analyzing and understanding bio-inspired heuristics,
such as the use of network science to characterize swarm-based algo-
rithms [426]. Ultimately, we hope that such insights can help to choose
the right algorithms for a given set of problems so as to solve them
efficiently.

4.4. From efficacy to efficiency in bio-inspired optimization

When it comes to performance assessment, most contributions to
date revolve around effectiveness (e.g. fitness statistics) for a given
complexity level (correspondingly, number of fitness evaluation) when
comparing among different bio-inspired approaches. Nonetheless, there
is an increasing global concern with energy efficiency, which has lately
coined the so-called Green Computing concept [427]. Algorithms under
this umbrella are designed with environmental sustainability as a design
goal itself, imprinting severe constraints in several steps of their execu-
tion thread. Important modifications result from the adoption of this
design directive, in aspects such as resource allocation, memory index-
ing or processing time. Most importantly, the way an algorithm is
implemented also renders a significant effect on the its actual efficiency,
which calls for the adoption of Green Computing from the very begin-
ning of the algorithm design procedure. Good practices aligned with
this range should enforce the community to always perform a complex-
ity analysis of novel algorithmic proposals (by quantifying it in terms
of number of sums/products and other similar implementation-agnostic
indicators). In any case, studies on the algorithmic efficiency of bio-
inspired approaches should avoid reporting on measurements closely
linked to the implementation and deployment of the algorithm itself,
such as timing logs or net memory consumption, which are strongly
biased by non-algorithmic matters. A correspondence between the char-
acteristics of algorithmic components and their expected carbon foot-
print should be also derived in the future.

4.5. Bio-inspired machine learning and deep neural processing

Traditionally the useful intersection between bio-inspired optimiza-
tion and Machine Learning (ML) has drawn close attention in the liter-
ature, combining both fields of knowledge into single data-based mod-
els for manifold reasons: to mention a few, bio-inspired algorithms
have been profusely exploited to expedite the learning process of ML
models, with particular emphasis on neural networks of different kind
[428,429]. Correspondingly, ML models lie at the core of surrogate-
model assisted optimization in which, as introduced in Subsection 3.6,
computationally expensive objectives are replaced by cheaper regres-
sion models built on a few evaluated individuals [430]. Likewise,
bio-inspired heuristics are often utilized for prescribing near-optimal
actions based on the predictions produced by ML models, completing
what has lately been known as actionable data science [431]. Examples
of the mutually rewarding relationship between Markov Chain Monte
Carlo and bio-inspired optimization are also enlightening: the efficiency
of complex MCMC simulations has been shown to improve by leverag-
ing DE-based heuristics [432], whereas DE solvers encompassing MCMC
elements have been shown to better choose the scale and orientation
of the distribution modeling the underlying mutation operator [433].
Recently Wang et al. [434] evolved a population of generators which
competed against the discriminator network in the framework of Gen-
erative Adversarial Networks (GANs) through an adversarial game and
by using specially defined mutation operators. The resulting evolution-
ary GAN not only alleviated some of the inherent problems associated
with the training of conventional GANs, but also exhibited improved
generative capabilities.

Besides other multiple scenarios leveraging this profitable comple-
mentarity (such as feature selection/construction [435], opposition-
based learning for bio-inspired optimization methods [436] or their
hybridization with elements from Reinforcement Learning [437]), pos-
sibilities for the future are foreseen to sprout sharply given the enor-

mous number of parameters featured by the family of Deep Learning
models, which are lately prospecting the adoption of bio-inspired LSGO
techniques as an efficient replacement for gradient back-propagation
[438,439]. Another ML research niche with a noted predominance of
bio-inspired heuristics is automated ML which, despite being known for
decades under different denominations (e.g. neuro-evolution [440]),
it is now when the area has been reforged as a result of the increas-
ing design complexity and variety of algorithmic components of Deep
Learning models [441–443]. Surely ML and bio-inspired computation
will enjoy a mutually rewarding marriage in years to come.

4.6. New challenges of bio-inspired techniques for human-centric
applications

Human-centric applications such as Video Games or Virtual Real-
ity/Augmented Reality (VR/AR) are currently at the forefront of scenar-
ios where bio-inspired optimization can provide unprecedented levels
of machine intelligence [444]. Such applications are often character-
ized by a continuous interaction between the user and the machine,
thereby requiring superior capabilities of the underlying algorithms
for dynamic adaptation, incremental learning and bounded complex-
ity. Despite these computational constraints, the countless opportunities
that bio-inspired computation may bring to these application domains
– from improved self-localization to the optimized simulation of crowds
or the optimal manipulation of virtual objects– can drive significantly
efforts towards adapting them to these computing environments. For
instance, latency in VR/AR is known to be severely limited by the so-
called motion to photon threshold (∼20 ms), which poses challenging
design constraints on any bio-inspired optimization method designed
to e.g. improve the user experience or optimize the rendering process
of media content from streaming servers. Here we venture a vast algo-
rithmic territory to be explored in the future, unleashing new interest-
ing paradigms such as continual optimization for multiple, recurrently
varying problem statements (in clear connection to Continual/Lifelong
Machine Learning [445]) and self-impacting models, in which actions
taken on the basis of their predictions may affect subsequent predictive
outcomes thereafter.

4.7. Bio-inspired optimization and emerging computing paradigms

In addition to the many-sided research avenues outlined above, the
entire community should keep a close eye at the impending arrival
of new computing paradigms, from the Map/Reduce model that lies
underneath Big Data architectures to Ephemeral Computing, Exas-
cale Computing and Quantum Computing. Roughly a decade ago we
did not expect computing technology to evolve as fast as we have
witnessed ever since, developing data-intensive technologies capable
of ingesting, storing and handling huge amounts of data. Nowadays
Map/Reduce implementations of bio-inspired algorithms are available
for their deployment on Big Data platforms [446–448]. In terms of pro-
cessing power a similar trend can be noted nowadays in the form of
Ephemeral Computing [449] and Exascale Computing [450], both pro-
viding efficient means for scaling up complex bio-inspired algorithms.
Yet still at its infancy, Quantum Computing is already spanning its
applicability towards the ML realm and anticipating astonishing gains
in terms of processing throughput for many other fields, including ML
and large-scale optimization [451,452].

We do not know which other computing paradigms we will
encounter in the future and most importantly, how they will impair
the design and deployment of bio-inspired optimization methods. Nev-
ertheless, we must prepare ourselves for their eventual arrival by con-
ducting research efforts along valuable directions in this field. Unless
we all acknowledge this pressing need for joining forces and agree on
the real priorities of bio-inspired computation, we will wander errati-
cally and blind through incremental research paths that lead nowhere
in this field.
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5. Conclusion: an exciting future for bio-inspired computation

In this manuscript we have shared our envisioned status of bio-
inspired computation, which calls for a profound reflection on the
research paths that the community should follow in the future. To this
end, we have briefly reviewed the history of this field from the very
advent of EC to the plethora of new SI methods appearing in the late
literature. Grounded on this historical perspective we have identified
research paths for a number of selected areas within bio-inspired opti-
mization that should congregate most of the global research efforts in
years to come.

Nature is truly fascinating and full of intriguing phenomena still
to be understood. Unrevealed paradigms underneath this science will
surely continue fostering new advances in bio-inspired optimization,
featuring unseen levels of performance and computational efficiency.
Today we, the research community, have the chance to leave mislead-
ing research paths behind, and face together an overwhelming future
for this field in a harmonized, principled and scientifically enriching
manner.
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[66] M. Črepinšek, S.-H. Liu, M. Mernik, Exploration and exploitation in evolutionary
algorithms: a survey, ACM Comput. Surv. (CSUR) 45 (3) (2013) 35.

[67] J. Lehman, K.O. Stanley, Novelty search and the problem with objectives, in:
Genetic Programming Theory and Practice IX, 2011, pp. 37–56.

[68] M. Weber, V. Tirronen, F. Neri, Scale factor inheritance mechanism in distributed
differential evolution, Soft Comput. 14 (11) (2010) 1187–1207.

[69] F. Vitaliy, Differential Evolution–In Search of Solutions, 2006.
[70] A.V. Kononova, D.W. Corne, P. De Wilde, V. Shneer, F. Caraffini, Structural bias

in population-based algorithms, Inf. Sci. 298 (2015) 468–490.
[71] A.P. Piotrowski, J.J. Napiorkowski, Some metaheuristics should be simplified,

Inf. Sci. 427 (2018) 32–62.
[72] J. Branke, Evolutionary Approaches to Dynamic Optimization Problems – A

Survey, Technical Report 387, University of Karlsruhe, 1999.
[73] D.V. Arnold, H.-G. Beyer, Random dynamics optimum tracking with evolution

strategies, in: International Conference on Parallel Problem Solving from Nature,
2002, pp. 3–12.

[74] D.V. Arnold, H.-G. Beyer, Optimum tracking with evolution strategies, Evol.
Comput. 14 (3) (2006) 291–308.

[75] S. Jiang, S. Yang, X. Yao, K.C. Tan, M. Kaiser, N. Krasnogor, Benchmark
Functions for the CEC’2018 Competition on Dynamic Multiobjective
Optimization, Tech. rep., Newcastle University, 2018.

[76] C. Cruz, J.R. González, D.A. Pelta, Optimization in dynamic environments: A
survey on problems, methods and measures, Soft Comput. 15 (7) (2011)
1427–1448.

[77] M. Mavrovouniotis, C. Li, S. Yang, A survey of swarm intelligence for dynamic
optimization: algorithms and applications, Swarm Evolut. Comput. 33 (2017)
1–17.

[78] X. Hu, R.C. Eberhart, Adaptive particle swarm optimization: Detection and
response to dynamic systems, in: IEEE Congress on Evolutionary Computation,
vol. 2, 2002, pp. 1666–1670.

[79] S. Janson, M. Middendorf, A hierarchical particle swarm optimizer for noisy and
dynamic environments, Genet. Program. Evolvable Mach. 7 (4) (2006) 329–354.

[80] H.G. Cobb, An Investigation into the Use of Hypermutation as an Adaptive
Operator in Genetic Algorithms Having Continuous, Time-dependent
Nonstationary Environments, Tech. rep., Naval Research Lab, Washington DC,
1990.

[81] C.-K. Goh, K.C. Tan, A competitive-cooperative coevolutionary paradigm for
dynamic multiobjective optimization, IEEE Trans. Evol. Comput. 13 (1) (2009)
103–127.

[82] H. Ma, S. Shen, M. Yu, Z. Yang, M. Fei, H. Zhou, Multi-population techniques in
nature inspired optimization algorithms: a comprehensive survey, Swarm Evolut.
Comput. 44 (2019) 365–387.

[83] D. Yazdani, T.T. Nguyen, J. Branke, J. Wang, A new multi-swarm particle swarm
optimization for robust optimization over time, in: European Conference on the
Applications of Evolutionary Computation, 2017, pp. 99–109.

[84] P. Novoa-Hernández, C.C. Corona, D.A. Pelta, Self-adaptation in dynamic
environments-a survey and open issues, Int. J. Bio-Inspired Comput. 8 (1) (2016)
1–13.

[85] T.T. Nguyen, S. Yang, J. Branke, Evolutionary dynamic optimization: a survey of
the state of the art, Swarm Evolut. Comput. 6 (2012) 1–24.

[86] G. Tintner, Stochastic linear programming with applications to agricultural
economics, in: Symposium in Linear Programming, 1955, pp. 197–228.

[87] E.M.L. Beale, On minimizing a convex function subject to linear inequalities, J. R.
Stat. Soc. Ser. B (Methodological) (1955) 173–184.

[88] N.V. Sahinidis, Optimization under uncertainty: State-of-the-art and
opportunities, Comput. Chem. Eng. 28 (6–7) (2004) 971–983.

[89] G.B. Dantzig, Linear programming under uncertainty, Manag. Sci. 1 (3–4) (1955)
197–206.

[90] Z.B. Zabinsky, Stochastic adaptive search methods: Theory and implementation,
in: Handbook of Simulation Optimization, Springer, 2015, pp. 293–318.

[91] M. Inuiguchi, H. Ichihashi, H. Tanaka, Fuzzy programming: A survey of recent
developments, in: Stochastic versus Fuzzy Approaches to Multiobjective
Mathematical Programming under Uncertainty, Springer, 1990, pp. 45–68.

[92] S.M. Ross, Introduction to Stochastic Dynamic Programming, Academic press,
2014.

[93] H.-G. Beyer, B. Sendhoff, Robust optimization–a comprehensive survey, Comput.
Methods Appl. Mech. Eng. 196 (33–34) (2007) 3190–3218.

[94] A. Ben-Tal, L. El Ghaoui, A. Nemirovski, Robust Optimization, vol. 28, Princeton
University Press, 2009.
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